-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplots.py
233 lines (201 loc) · 8.38 KB
/
plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue May 24 15:16:07 2022
@author: sen
"""
import torch
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from fcnn_model import FCNN8, VGGNet
from unet_model import VGGNET as UNET_VGG
from segnet_model import SEGNET
from camvid_dataloader import CamVidDataset
from matplotlib import pyplot as plt
import numpy as np
import os
from numpy import genfromtxt
import imageio
from skimage.transform import resize
import random
from torchvision import models
from torchvision.models.vgg import VGG
import cv2 as cv
from torchvision.models import vgg16_bn
__all__ = ['vgg16bn_unet']
nworkers = 2
nclasses = 32
batch_size = 8
epochs = 100
lr = 0.0002
weight_decay = 0.0005
device = "cuda" if torch.cuda.is_available() else "cpu"
root_dir = "CamVid/"
train_file = os.path.join(root_dir, "train.txt")
val_file = os.path.join(root_dir, "val.txt")
fcnn_checkpoint = torch.load('cpts/fcnn8.cpt')
segnet_checkpoint = torch.load('cpts/segnet.cpt')
unet_checkpoint = torch.load('cpts/unet.cpt')
unet_adapt_checkpoint = torch.load('cpts/unet_adapt.cpt')
# pick random file
random.seed(1486438)
txt_val = np.loadtxt("CamVid/val.txt", dtype = str, delimiter=',', skiprows=1)
random_num = random.randint(0, len(txt_val[:,0]))
img_path = txt_val[:,0][random_num]
# load loss, pixel accuracy and iou
fcnn_loss_vals = genfromtxt("results/fcnn8_loss.txt", delimiter=',')
fcnn_avg_pixel_acc_vals = genfromtxt("results/fcnn8_pixel_acc.txt", delimiter=',')
fcnn_avg_iou_vals = genfromtxt("results/fcnn8_iou.txt", delimiter=',')
fcnn_loss_vals_test = genfromtxt("results/fcnn8_loss_test.txt", delimiter=',')
fcnn_avg_pixel_acc_vals_test = genfromtxt("results/fcnn8_pixel_acc_test.txt", delimiter=',')
fcnn_avg_iou_vals_test = genfromtxt("results/fcnn8_iou_test.txt", delimiter=',')
segnet_loss_vals = genfromtxt("results/segnet_loss.txt", delimiter=',')
segnet_avg_pixel_acc_vals = genfromtxt("results/segnet_pixel_acc.txt", delimiter=',')
segnet_avg_iou_vals = genfromtxt("results/segnet_iou.txt", delimiter=',')
segnet_loss_vals_test = genfromtxt("results/segnet_loss_test.txt", delimiter=',')
segnet_avg_pixel_acc_vals_test = genfromtxt("results/segnet_pixel_acc_test.txt", delimiter=',')
segnet_avg_iou_vals_test = genfromtxt("results/segnet_iou_test.txt", delimiter=',')
unet_loss_vals = genfromtxt("results/unet_loss.txt", delimiter=',')
unet_avg_pixel_acc_vals = genfromtxt("results/unet_pixel_acc.txt", delimiter=',')
unet_avg_iou_vals = genfromtxt("results/unet_iou.txt", delimiter=',')
unet_loss_vals_test = genfromtxt("results/unet_loss_test.txt", delimiter=',')
unet_avg_pixel_acc_vals_test = genfromtxt("results/unet_pixel_acc_test.txt", delimiter=',')
unet_avg_iou_vals_test = genfromtxt("results/unet_iou_test.txt", delimiter=',')
# Plot train loss per epoch
plt.figure(figsize=(13,5))
plt.subplot(1,2,1)
plt.plot(fcnn_loss_vals, linewidth=1.5)
plt.plot(segnet_loss_vals, linewidth=1.5)
plt.plot(unet_loss_vals, linewidth=1.5)
plt.title('Training loss per epoch', fontsize = 16)
plt.xlabel('Number of epochs', fontsize = 16)
plt.ylabel('Loss value', fontsize = 16)
plt.legend(['FCNN', 'SegNet', 'UNet'],
prop={'size': 14},
frameon=False)
# Plot test loss per epoch
plt.subplot(1, 2, 2)
plt.plot(fcnn_loss_vals_test, linewidth=1.5)
plt.plot(segnet_loss_vals_test, linewidth=1.5)
plt.plot(unet_loss_vals_test, linewidth=1.5)
plt.title('Test loss per epoch', fontsize = 16)
plt.xlabel('Number of epochs', fontsize = 16)
plt.ylabel('Loss value', fontsize = 16)
plt.legend(['FCNN', 'SegNet', 'UNet'],
prop={'size': 14},
frameon=False)
plt.savefig('figs/test_vs_test_loss.png')
# Plot train IoU
plt.figure(figsize=(13,5))
plt.subplot(1,2,1)
plt.plot(fcnn_avg_iou_vals, linewidth=1.5)
plt.plot(segnet_avg_iou_vals, linewidth=1.5)
plt.plot(unet_avg_iou_vals, linewidth=1.5)
plt.title('Training IoU per epoch', fontsize = 16)
plt.xlabel('Number of epochs', fontsize = 16)
plt.ylabel('IoU value', fontsize = 16)
plt.legend(['FCNN', 'SegNet', 'UNet'],
prop={'size': 14},
frameon=False)
# Plot test IoU
plt.subplot(1, 2, 2)
plt.plot(fcnn_avg_iou_vals_test, linewidth=1.5)
plt.plot(segnet_avg_iou_vals_test, linewidth=1.5)
plt.plot(unet_avg_iou_vals_test, linewidth=1.5)
plt.title('Test IoU per epoch', fontsize = 16)
plt.xlabel('Number of epochs', fontsize = 16)
plt.ylabel('IoU value', fontsize = 16)
plt.legend(['FCNN', 'SegNet', 'UNet'],
prop={'size': 14},
frameon=False)
plt.savefig('figs/test_vs_test_iou.png')
# Plot train pixel accuracy per epoch
plt.figure(figsize=(13,5))
plt.subplot(1,2,1)
plt.plot(fcnn_avg_pixel_acc_vals, linewidth = 1.5)
plt.plot(segnet_avg_pixel_acc_vals, linewidth = 1.5)
plt.plot(unet_avg_pixel_acc_vals, linewidth = 1.5)
plt.title('Train average pixel accuracy per epoch', fontsize = 16)
plt.xlabel('Number of epochs', fontsize = 16)
plt.ylabel('Accuracy value ', fontsize = 16)
plt.legend(['FCNN', 'SegNet', 'UNet'], prop={'size': 14},
frameon=False)
# Plot train pixel accuracy per epoch
plt.subplot(1,2,2)
plt.plot(fcnn_avg_pixel_acc_vals_test, linewidth = 1.5)
plt.plot(segnet_avg_pixel_acc_vals_test, linewidth = 1.5)
plt.plot(unet_avg_pixel_acc_vals_test, linewidth = 1.5)
plt.title('Test average pixel accuracy per epoch', fontsize = 16)
plt.xlabel('Number of epochs', fontsize = 16)
plt.ylabel('Accuracy value ', fontsize = 16)
plt.legend(['FCNN', 'SegNet', 'UNet'], prop={'size': 14},
frameon=False)
plt.savefig('figs/test_vs_test_acc.png')
# load pretrained models and put into eval
vgg_model = VGGNet(requires_grad=True, remove_fc=True)
fcnn_model = FCNN8(pretrained=vgg_model, nclasses=nclasses).to(device)
fcnn_model.load_state_dict(fcnn_checkpoint['model_state_dict'])
fcnn_model.eval()
vgg_model = models.vgg16(pretrained=True)
segnet_model = SEGNET(pretrained=vgg_model, nclasses=nclasses).to(device)
segnet_model.load_state_dict(segnet_checkpoint['model_state_dict'])
segnet_model.eval()
def vgg16bn_unet(nclasses, pretrained = False):
return UNET_VGG(vgg16_bn, pretrained=pretrained, nclasses=nclasses)
vgg_model = models.vgg16(pretrained=True)
unet_model = vgg16bn_unet(nclasses = nclasses, pretrained=True).to(device)
unet_model.load_state_dict(unet_checkpoint['model_state_dict'])
unet_model.eval()
# plot predictions on image from test set
label_colors_file = os.path.join(root_dir, "label_colors.txt")
label2color = {}
color2label = {}
label2index = {}
index2label = {}
means = np.array([103.939, 116.779, 123.68]) / 255.
def parse_label():
f = open(label_colors_file, "r").read().split("\n")[:-1] # ignore the last empty line
for idx, line in enumerate(f):
label = line.split()[-1]
color = tuple([int(x) for x in line.split()[:-1]])
#print(label, color)
label2color[label] = color
color2label[color] = label
label2index[label] = idx
index2label[idx] = label
parse_label()
def test_img(img_path, model, model_name):
#img = scipy.misc.imread(img_path, mode='RGB')
img = imageio.imread(img_path, pilmode="RGB")
imageio.imsave('figs/test.jpg', img)
h, w, c = img.shape[0], img.shape[1], img.shape[2]
val_h = int(h / 64) * 32
val_w = int(w / 2)
img = resize(img, (val_h, val_w), order=1, mode="constant")
img = img[:, :, ::-1]
img = np.transpose(img, (2, 0, 1))
img[0] -= means[0]
img[1] -= means[1]
img[2] -= means[2]
inputs = torch.from_numpy(img.copy()).float()
inputs = torch.unsqueeze(inputs, 0).cuda()
output = model(inputs)
output = output.data.cpu().numpy()
N, _, h, w = output.shape
assert (N == 1)
pred = output.transpose(0, 2, 3, 1).reshape(-1, nclasses).argmax(axis=1).reshape(h, w)
pred_img = np.zeros((val_h, val_w, 3), dtype=np.float32)
for cls in range(nclasses):
pred_inds = pred == cls
label = index2label[cls]
color = label2color[label]
pred_img[pred_inds] = color
pred_img = resize(pred_img, (h, w), order=1, mode="constant")
imageio.imsave('figs/'+model_name+'_segmentation.jpg', pred_img)
# fcnn model prediction on test image
test_img(img_path, model = fcnn_model, model_name = 'fcnn')
# segnet model prediction on test image
test_img(img_path, model = segnet_model, model_name = 'segnet')
# unet model prediction on test image
test_img(img_path, model = unet_model, model_name = 'unet')