-
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathfinetune_peft_8bit.py
319 lines (266 loc) · 12.3 KB
/
finetune_peft_8bit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Code used from https://github.com/CarperAI/trlx/blob/main/examples/hh/sft_hh.py https://github.com/lvwerra/trl/blob/main/examples/sentiment/scripts/gpt-neox-20b_peft/gpt-neo-20b_sentiment_peft.py
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import os
import torch
import torch.nn as nn
import transformers
import accelerate
from datasets import load_dataset
from peft import LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training
from peft.tuners.lora import LoraLayer
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, TrainingArguments, LlamaTokenizer, LlamaForCausalLM, LlamaConfig
from accelerate import init_empty_weights, infer_auto_device_map
from transformers import AutoConfig, set_seed, BitsAndBytesConfig
from utils import CastOutputToFloat, smart_tokenizer_and_embedding_resize, print_trainable_parameters, str_or_bool
import torch.backends.cuda
torch.backends.cuda.matmul.allow_tf32 = True
# Uncomment the following line to enable flash attention (model source code must be modified)
# torch.backends.cuda.enable_flash_sdp(enabled=True)
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
def save_tunable_parameters(model, path):
saved_params = {
k: v.to("cpu")
for k, v in model.named_parameters()
if v.requires_grad
}
torch.save(saved_params, path)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default="meta-llama/Llama-2-7b-hf",
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
cache_dir: Optional[str] = field(
default=None
)
r: Optional[int] = field(
default=64, metadata={"help": "The LoRA rank."}
)
lora_alpha: Optional[float] = field(
default=32, metadata={"help": "The LoRA alpha."}
)
lora_dropout: Optional[float] = field(
default=0.05, metadata={"help": "The LoRA dropout."}
)
bits: Optional[int] = field(
default=4, metadata={"help": "The number of bits to quantize to."}
)
double_quant: Optional[bool] = field(
default=True, metadata={"help": "Whether to use double quantization."}
)
quant_type: str = field(
default="nf4", metadata={"help": "Quantization data type to use. [fp4, nf4]"}
)
trust_remote_code: Optional[bool] = field(
default=False,
metadata={"help": "Enable unpickling of arbitrary code in AutoModelForCausalLM."}
)
use_auth_token: str_or_bool = field(
default=False,
metadata={"help": "Enables using Huggingface auth token to download private/restricted models."}
)
@dataclass
class DataTrainingArguments:
dataset_name: Optional[str] = field(
default="Dahoas/full-hh-rlhf", metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
block_size: Optional[int] = field(
default=4096, metadata={"help": "The maximum length of the training sequence."}
)
multi_gpu: Optional[bool] = field(
default=False, metadata={"help": "Whether to use multiple GPUs."}
)
tensor_parallel: Optional[bool] = field(
default=False, metadata={"help": "Whether to use tensor parallelism. (Must be used with multi_gpu)"}
)
model_output_dir: Optional[str] = field(
default="LLaMA/LoRA", metadata={"help": "The directory to save the model."}
)
def get_device_map(model_name, id_=0, do_int8=False, do_int4=True):
with init_empty_weights():
config = LlamaConfig.from_pretrained(model_name)
model = AutoModelForCausalLM.from_config(config)
d = {id_: "5000MiB"}
d[1] = "4500MiB"
d[2] = "4500MiB"
d[3] = "4500MiB"
d[4] = "4500MiB"
d[5] = "4500MiB"
d[6] = "4500MiB"
d[7] = "6000MiB"
dtype = torch.float16
if do_int8:
dtype = torch.int8
elif do_int4:
dtype = torch.int4
device_map = infer_auto_device_map(
model, max_memory=d, dtype=dtype, no_split_module_classes=["BloomBlock", "OPTDecoderLayer", "LLaMADecoderLayer", "LlamaDecoderLayer"]
)
print(device_map)
del model
return device_map
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if data_args.tensor_parallel == True and data_args.multi_gpu == False:
raise ValueError("Tensor parallelism can only be used with multi_gpu.")
if data_args.multi_gpu == True:
if data_args.tensor_parallel == True:
# split the model across GPUs
device_map = get_device_map(model_args.model_name_or_path)
else:
# stick a copy of the model on each GPU
device_map = {"": accelerate.Accelerator().process_index}
else:
device_map = "auto"
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
load_in_4bit=model_args.bits == 4,
load_in_8bit=model_args.bits == 8,
device_map=device_map,
quantization_config=BitsAndBytesConfig(
load_in_4bit=model_args.bits == 4,
load_in_8bit=model_args.bits == 8,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=model_args.double_quant,
bnb_4bit_quant_type=model_args.quant_type,
),
torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)),
trust_remote_code=model_args.trust_remote_code,
use_auth_token=model_args.use_auth_token
)
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, max_length=4096)
if tokenizer._pad_token is None:
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
tokenizer=tokenizer,
model=model,
)
tokenizer.add_special_tokens({
"eos_token": tokenizer.convert_ids_to_tokens(model.config.eos_token_id),
"bos_token": tokenizer.convert_ids_to_tokens(model.config.bos_token_id),
"unk_token": tokenizer.convert_ids_to_tokens(
model.config.pad_token_id if model.config.pad_token_id != -1 else tokenizer.pad_token_id
),
})
# ### Prepare model for training
#
# Some pre-processing needs to be done before training such an int8 model using `peft`, therefore let's import an utiliy function `prepare_model_for_int8_training` that will:
# - Cast the layer norm in `float32` for stability purposes
# - Add a `forward_hook` to the input embedding layer to enable gradient computation of the input hidden states
# - Enable gradient checkpointing for more memory-efficient training
# - Cast the output logits in `float32` for smoother sampling during the sampling procedure
# for param in model.parameters():
# param.requires_grad = False # freeze the model - train adapters later
# if param.ndim == 1:
# # cast the small parameters (e.g. layernorm) to fp32 for stability
# param.data = param.data.to(torch.float16) #32) half precision seems to work just as well in practice
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
# model.lm_head = CastOutputToFloat(model.lm_head)
# model = prepare_model_for_int8_training(model) seemed to mess up training stability for some reason
# ### Apply LoRA
#
# Here comes the magic with `peft`! Let's load a `PeftModel` and specify that we are going to use low-rank adapters (LoRA) using `get_peft_model` utility function from `peft`.
target_modules = ['q_proj', 'k_proj', 'v_proj', 'o_proj'] # edit with your desired target modules
config = LoraConfig(
r=model_args.r,
lora_alpha=model_args.lora_alpha,
target_modules=target_modules,
lora_dropout=model_args.lora_dropout,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
if training_args.bf16:
module = module.to(torch.bfloat16)
if 'norm' in name:
module = module.to(torch.float32)
if 'lm_head' in name or 'embed_tokens' in name:
if hasattr(module, 'weight'):
if training_args.bf16 and module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
print_trainable_parameters(model_args, model)
block_size = data_args.block_size
### Prepare dataset
# Use this function to concatenate all texts from your dataset and generate chunks of block_size.
# def group_texts(examples):
# # Concatenate all texts.
# concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
# total_length = len(concatenated_examples[list(examples.keys())[0]])
# # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# # customize this part to your needs.
# if total_length >= block_size:
# total_length = (total_length // block_size) * block_size
# # Split by chunks of max_len.
# result = {
# k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
# for k, t in concatenated_examples.items()
# }
# result["labels"] = result["input_ids"].copy()
# return result
# def group_texts(examples):
# examples["labels"] = examples["input_ids"].copy()
# return examples
def preprocess(sample):
sample["chosen_sample"] = sample["prompt"] + sample["chosen"]
return sample
# tokenizer.add_bos_token = True
# tokenizer.add_eos_token = False # Uncomment if you concatenate all texts from your dataset and generate chunks of block_size.
# tokenizer.padding_side = "left"
# tokenizer.truncation_side = "left"
def tokenize(prompt):
result = tokenizer(
prompt,
truncation=True,
max_length=block_size,
padding="max_length",
add_special_tokens=True
)
return {
"input_ids": result["input_ids"],
"attention_mask": result["attention_mask"],
}
### Training
dataset = load_dataset(data_args.dataset_name).map(preprocess)
columns = dataset["train"].features
# Use this for simple exmaple samples (conversation turns with dialogue history, instructions/responses, etc.)
dataset = dataset.map(lambda samples: tokenize(samples["chosen_sample"]), batched=True, remove_columns=columns)
# Use this to concatenate all texts from your dataset and generate chunks of block_size. (Books, etc.)
#dataset = dataset.map(lambda samples: tokenizer(samples["chosen_sample"], padding=False, add_special_tokens=True), batched=True, remove_columns=columns)
#dataset = dataset.map(group_texts, batched=True)
# Train
# model = torch.compile(model) # pytorch 2.0 but doesn't seem to work yet? (Should increase speed)
if data_args.tensor_parallel == True:
model.is_parallelizable = True
model.model_parallel = True
trainer = transformers.Trainer(
model=model,
train_dataset=dataset['train'],
eval_dataset=dataset['test'],
args=training_args,
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
trainer.train()
model.config.use_cache = True
# Save model
model.save_pretrained(data_args.model_output_dir)
if __name__ == "__main__":
main()