-
Notifications
You must be signed in to change notification settings - Fork 0
/
quhabiton.py
290 lines (236 loc) · 11.2 KB
/
quhabiton.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import numpy as np
from qiskit import QuantumCircuit, Aer, execute
from qiskit.circuit.library import ZZFeatureMap
from qiskit.algorithms.optimizers import COBYLA
from qiskit_machine_learning.algorithms import VQC
from qiskit.utils import QuantumInstance
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import networkx as nx
class QuHabiton:
def __init__(self, name, difficulty, frequency):
self.name = name
self.difficulty = difficulty
self.frequency = frequency
self.success_rate = 0.0
self.score = 0.0
self.amplitude = self._initialize_amplitude()
self.spin = self._calculate_spin()
self.charge = self._calculate_charge()
self.entanglement = {}
def _initialize_amplitude(self):
theta = np.pi / (2 * self.difficulty)
return complex(np.cos(theta), np.sin(theta))
def _calculate_spin(self):
return 1 / (1 + np.exp(-self.frequency / self.difficulty))
def _calculate_charge(self):
return (self.frequency - self.difficulty) / 10
def update_amplitude(self):
theta = np.pi * self.success_rate / (2 * self.difficulty)
self.amplitude = complex(np.cos(theta), np.sin(theta))
def get_success_probability(self):
return abs(self.amplitude) ** 2
def measure(self):
prob_success = self.get_success_probability()
return np.random.random() < prob_success
def update(self, success):
self.success_rate = (self.success_rate * self.frequency + int(success)) / (self.frequency + 1)
self.update_amplitude()
if success:
self.amplitude *= 1.1
else:
self.amplitude *= 0.9
self.amplitude /= abs(self.amplitude) # Normalize
def entangle(self, other_habit, strength):
self.entanglement[other_habit.name] = strength
other_habit.entanglement[self.name] = strength
def apply_entanglement(self):
for habit_name, strength in self.entanglement.items():
self.amplitude += strength * 0.1j
self.amplitude /= abs(self.amplitude) # Normalize
class QuHabitonSystem:
def __init__(self, n_dimensions=5):
self.habits = {}
self.n_dimensions = n_dimensions
self.distance_matrix = None
self.embedded_points = None
self.scaler = StandardScaler()
def add_habit(self, name, difficulty, frequency):
self.habits[name] = QuHabiton(name, difficulty, frequency)
def entangle_habits(self, habit1_name, habit2_name, strength):
self.habits[habit1_name].entangle(self.habits[habit2_name], strength)
def simulate_day(self):
for habit in self.habits.values():
habit.apply_entanglement()
success = habit.measure()
habit.update(success)
self._update_scores()
def _update_scores(self):
self._update_manifold()
topological_factor = self._calculate_topological_factor()
for habit in self.habits.values():
manifold_factor = self._calculate_manifold_factor(habit)
habit.score += habit.get_success_probability() * manifold_factor * topological_factor
def _update_manifold(self):
habit_vectors = np.array([[h.difficulty, h.frequency, h.success_rate, h.score, h.get_success_probability()] for h in self.habits.values()])
normalized_vectors = self.scaler.fit_transform(habit_vectors)
self.distance_matrix = squareform(pdist(normalized_vectors))
mds = MDS(n_components=self.n_dimensions, dissimilarity='precomputed', random_state=42, max_iter=300, n_init=10)
self.embedded_points = mds.fit_transform(self.distance_matrix)
def _calculate_manifold_factor(self, habit):
if len(self.habits) < 2:
return 1.0
habit_vector = np.array([habit.difficulty, habit.frequency, habit.success_rate, habit.score, habit.get_success_probability()])
distances = np.linalg.norm(self.embedded_points - habit_vector, axis=1)
nearest_distance = np.min(distances[distances > 0])
return 1 + 1 / (1 + nearest_distance)
def _calculate_topological_factor(self):
if len(self.habits) < 3:
return 1.0
diagrams = ripser(self.embedded_points)['dgms']
persistence = np.sum([np.sum(diag[:, 1] - diag[:, 0]) for diag in diagrams])
return 1 + persistence / len(self.habits)
def visualize_bloch_sphere(self):
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111, projection='3d')
for habit in self.habits.values():
theta = 2 * np.arccos(habit.amplitude.real)
phi = np.arctan2(habit.amplitude.imag, habit.amplitude.real)
x = np.sin(theta) * np.cos(phi)
y = np.sin(theta) * np.sin(phi)
z = np.cos(theta)
ax.scatter(x, y, z, label=habit.name)
u, v = np.mgrid[0:2*np.pi:20j, 0:np.pi:10j]
x = np.cos(u)*np.sin(v)
y = np.sin(u)*np.sin(v)
z = np.cos(v)
ax.plot_wireframe(x, y, z, color="gray", alpha=0.1)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
ax.legend()
plt.title("QuHabitons on Bloch Sphere")
plt.show()
def visualize_entanglement(self):
G = nx.Graph()
for habit in self.habits.values():
G.add_node(habit.name, spin=habit.spin, charge=habit.charge)
for other_habit, strength in habit.entanglement.items():
G.add_edge(habit.name, other_habit, weight=strength)
pos = nx.spring_layout(G)
plt.figure(figsize=(12, 8))
nx.draw_networkx_nodes(G, pos, node_color=[h.charge for h in self.habits.values()],
node_size=[h.spin*1000 for h in self.habits.values()],
cmap=plt.cm.RdYlBu)
nx.draw_networkx_edges(G, pos, width=[G[u][v]['weight']*5 for u,v in G.edges()])
nx.draw_networkx_labels(G, pos)
plt.title("QuHabiton Entanglement Network")
plt.axis('off')
plt.show()
def visualize_manifold(self):
if len(self.habits) < 2:
print("Need at least 2 habits to visualize.")
return
plt.figure(figsize=(10, 8))
plt.scatter(self.embedded_points[:, 0], self.embedded_points[:, 1])
for i, habit in enumerate(self.habits.values()):
plt.annotate(habit.name, (self.embedded_points[i, 0], self.embedded_points[i, 1]))
plt.title('Habit Manifold Visualization')
plt.show()
def visualize_topology(self):
if len(self.habits) < 3:
print("Need at least 3 habits for topological analysis.")
return
diagrams = ripser(self.embedded_points)['dgms']
plot_diagrams(diagrams, show=True)
class QuHabitonQML(QuHabitonSystem):
def __init__(self, n_dimensions=5):
super().__init__(n_dimensions)
self.qml_model = None
self.prediction_history = []
def train_qml_model(self):
# Prepare data
X = np.array([[h.difficulty, h.frequency, h.success_rate, h.score, h.get_success_probability()]
for h in self.habits.values()])
y = np.array([h.measure() for h in self.habits.values()])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Define quantum circuit
feature_map = ZZFeatureMap(feature_dimension=5, reps=2)
ansatz = QuantumCircuit(5)
for i in range(5):
ansatz.ry(np.pi/2, i)
ansatz.cx(i, (i+1)%5)
# Create VQC instance
qi = QuantumInstance(Aer.get_backend('aer_simulator'), shots=1024)
optimizer = COBYLA(maxiter=100)
self.qml_model = VQC(feature_map=feature_map,
ansatz=ansatz,
optimizer=optimizer,
quantum_instance=qi)
# Train model
self.qml_model.fit(X_train, y_train)
# Evaluate model
score = self.qml_model.score(X_test, y_test)
print(f"QML Model Accuracy: {score}")
def predict_future(self, days=4):
if self.qml_model is None:
self.train_qml_model()
predictions = []
current_state = np.array([[h.difficulty, h.frequency, h.success_rate, h.score, h.get_success_probability()]
for h in self.habits.values()])
for _ in range(days):
day_prediction = self.qml_model.predict(current_state)
predictions.append(day_prediction)
# Update current_state based on predictions
for i, habit in enumerate(self.habits.values()):
habit.update(bool(day_prediction[i]))
current_state = np.array([[h.difficulty, h.frequency, h.success_rate, h.score, h.get_success_probability()]
for h in self.habits.values()])
self.prediction_history.append(predictions)
return predictions
def calculate_future_score(self, predictions):
future_scores = {}
for name, habit in self.habits.items():
future_success_rate = sum(pred[i] for pred in predictions) / len(predictions)
future_score = habit.score + (future_success_rate * habit.difficulty * habit.frequency)
future_scores[name] = future_score
return future_scores
def update_scores_with_prediction(self):
predictions = self.predict_future()
future_scores = self.calculate_future_score(predictions)
for name, habit in self.habits.items():
prediction_factor = future_scores[name] / habit.score if habit.score != 0 else 1
habit.score *= (1 + prediction_factor) / 2 # Blend current score with predicted future score
def simulate_day(self):
super().simulate_day()
self.update_scores_with_prediction()
def visualize_predictions(self):
if not self.prediction_history:
print("No predictions available. Run predict_future() first.")
return
latest_prediction = self.prediction_history[-1]
habit_names = list(self.habits.keys())
plt.figure(figsize=(12, 6))
for i, habit in enumerate(habit_names):
plt.plot(range(1, 5), [pred[i] for pred in latest_prediction], label=habit, marker='o')
plt.title("4-Day Habit Success Predictions")
plt.xlabel("Day")
plt.ylabel("Predicted Success (0 or 1)")
plt.legend()
plt.yticks([0, 1])
plt.grid(True)
plt.show()
# Example usage
system = QuHabitonQML()
system.add_habit("Meditation", difficulty=5, frequency=1)
system.add_habit("Exercise", difficulty=7, frequency=3)
system.add_habit("Reading", difficulty=3, frequency=1)
system.add_habit("Coding", difficulty=6, frequency=2)
system.entangle_habits("Meditation", "Exercise", 0.5)
system.entangle_habits("Reading", "Coding", 0.7)
for _ in range(30): # Simulate for 30 days
system.simulate_day()
system.predict_future()
system.visualize_predictions()
for name, habit in system.habits.items():
print(f"{name}: Score = {habit.score:.2f}, Success Rate = {habit.success_rate:.2%}, Success Probability = {habit.get_success_probability():.2%}")