-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdata_loader.py
60 lines (58 loc) · 2.1 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
"""
Description : Set DataSet module for Wavenet
"""
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License
import os
import numpy as np
from scipy.io import wavfile
from mxnet import nd
from utils import encode_mu_law
# pylint: disable=invalid-name, too-many-arguments
def load_wav(file_nm):
"""
Description : load wav file
"""
fs, data = wavfile.read(os.getcwd()+'/data/'+file_nm)
return fs, data
def data_generation(data, framerate, seq_size, mu, ctx, gen_mode=None):
"""
Description : data generation to loading data
"""
if gen_mode == 'sin':
t = np.linspace(0, 5, framerate*5)
data = np.sin(2*np.pi*220*t) + np.sin(2*np.pi*224*t)
div = max(data.max(), abs(data.min()))
data = data/div
while True:
start = np.random.randint(0, data.shape[0]-seq_size)
ys = data[start:start+seq_size]
ys = encode_mu_law(ys, mu)
yield nd.array(ys[:seq_size], ctx=ctx)
def data_generation_sample(data, framerate, seq_size, mu, ctx, gen_mode=None):
"""
Description : sample data generation to loading data
"""
if gen_mode == 'sin':
t = np.linspace(0, 5, framerate*5)
data = np.sin(2*np.pi*220*t) + np.sin(2*np.pi*224*t)
div = max(data.max(), abs(data.min()))
data = data/div
start = 0
ys = data[start:start+seq_size]
ys = encode_mu_law(ys, mu)
return nd.array(ys[:seq_size], ctx=ctx)