-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_utils.py
153 lines (130 loc) · 5.23 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Utility functions for the real NVP model.
#
# Author: Fangzhou Mu <fmu2@wisc.edu>
#
# https://github.com/fmu2/realNVP
"""Utility functions for real NVP.
"""
import torch
import torch.nn.functional as F
import torch.distributions as distributions
import torch.utils.data as data
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import numpy as np
# DATA_ROOT = "../../data/"
DATA_ROOT = "~/datasets/"
class Hyperparameters():
def __init__(self, base_dim, res_blocks, bottleneck,
skip, weight_norm, coupling_bn, affine):
"""Instantiates a set of hyperparameters used for constructing layers.
Args:
base_dim: features in residual blocks of first few layers.
res_blocks: number of residual blocks to use.
bottleneck: True if use bottleneck, False otherwise.
skip: True if use skip architecture, False otherwise.
weight_norm: True if apply weight normalization, False otherwise.
coupling_bn: True if batchnorm coupling layer output, False otherwise.
affine: True if use affine coupling, False if use additive coupling.
"""
self.base_dim = base_dim
self.res_blocks = res_blocks
self.bottleneck = bottleneck
self.skip = skip
self.weight_norm = weight_norm
self.coupling_bn = coupling_bn
self.affine = affine
class DataInfo():
def __init__(self, name, channel, size):
"""Instantiates a DataInfo.
Args:
name: name of dataset.
channel: number of image channels.
size: height and width of an image.
"""
self.name = name
self.channel = channel
self.size = size
def load(dataset):
"""Load dataset.
Args:
dataset: name of dataset.
Returns:
a torch dataset and its associated information.
"""
if dataset == 'cifar10': # 3 x 32 x 32
data_info = DataInfo(dataset, 3, 32)
transform = transforms.Compose(
[transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor()])
train_set = datasets.CIFAR10(DATA_ROOT + 'CIFAR10',
train=True, download=True, transform=transform)
[train_split, val_split] = data.random_split(train_set, [46000, 4000])
elif dataset == 'celeba': # 3 x 218 x 178
data_info = DataInfo(dataset, 3, 64)
def CelebACrop(images):
return transforms.functional.crop(images, 40, 15, 148, 148)
transform = transforms.Compose(
[CelebACrop,
transforms.Resize(64),
transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor()])
train_set = datasets.ImageFolder(DATA_ROOT + 'CelebA/train',
transform=transform)
[train_split, val_split] = data.random_split(train_set, [150000, 12770])
elif dataset == 'imnet32':
data_info = DataInfo(dataset, 3, 32)
transform = transforms.Compose(
[transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor()])
train_set = datasets.ImageFolder(DATA_ROOT + 'ImageNet32/train',
transform=transform)
[train_split, val_split] = data.random_split(train_set, [1250000, 31149])
elif dataset == 'imnet64':
data_info = DataInfo(dataset, 3, 64)
transform = transforms.Compose(
[transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor()])
train_set = datasets.ImageFolder(DATA_ROOT + 'ImageNet64/train',
transform=transform)
[train_split, val_split] = data.random_split(train_set, [1250000, 31149])
return train_split, val_split, data_info
def logit_transform(x, constraint=0.9, reverse=False):
'''Transforms data from [0, 1] into unbounded space.
Restricts data into [0.05, 0.95].
Calculates logit(alpha+(1-alpha)*x).
Args:
x: input tensor.
constraint: data constraint before logit.
reverse: True if transform data back to [0, 1].
Returns:
transformed tensor and log-determinant of Jacobian from the transform.
(if reverse=True, no log-determinant is returned.)
'''
if reverse:
x = 1. / (torch.exp(-x) + 1.) # [0.05, 0.95]
x *= 2. # [0.1, 1.9]
x -= 1. # [-0.9, 0.9]
x /= constraint # [-1, 1]
x += 1. # [0, 2]
x /= 2. # [0, 1]
return x, 0
else:
[B, C, H, W] = list(x.size())
# dequantization
noise = distributions.Uniform(0., 1.).sample((B, C, H, W))
x = (x * 255. + noise) / 256.
# restrict data
x *= 2. # [0, 2]
x -= 1. # [-1, 1]
x *= constraint # [-0.9, 0.9]
x += 1. # [0.1, 1.9]
x /= 2. # [0.05, 0.95]
# logit data
logit_x = torch.log(x) - torch.log(1. - x)
# log-determinant of Jacobian from the transform
pre_logit_scale = torch.tensor(
np.log(constraint) - np.log(1. - constraint))
log_diag_J = F.softplus(logit_x) + F.softplus(-logit_x) \
- F.softplus(-pre_logit_scale)
return logit_x, torch.sum(log_diag_J, dim=(1, 2, 3))