-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
ecdsa.go
373 lines (310 loc) · 9.76 KB
/
ecdsa.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
package mono
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"crypto/x509"
"encoding/asn1"
"encoding/base64"
"encoding/pem"
"errors"
"fmt"
"math/big"
"reflect"
)
var (
secp256k1 *CurveParams
secp256k1OID asn1.ObjectIdentifier = []int{1, 3, 132, 0, 10}
)
const (
ecPrivateKeyBlockType = "EC PRIVATE KEY"
ecPrivateKeyVersion = 1
)
// Initializes parameters for secp256k1 elliptic curve.
func init() {
secp256k1 = new(CurveParams)
secp256k1.Name = "secp256k1"
secp256k1.P, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", 16) // Prime
secp256k1.N, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16) // Order
secp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16) // B
secp256k1.Gx, _ = new(big.Int).SetString("79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798", 16) // Generator X
secp256k1.Gy, _ = new(big.Int).SetString("483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8", 16) // Generator Y
secp256k1.BitSize = 256
}
type ecPrivateKey struct {
Version int
PrivateKey []byte
NamedCurveOID asn1.ObjectIdentifier `asn1:"optional,explicit,tag:0"`
PublicKey asn1.BitString `asn1:"optional,explicit,tag:1"`
}
// SignTool it utility, which helps to sign message.
type SignTool struct {
B2A func([]byte) string
A2B func(string) ([]byte, error)
}
// DefaultSignTool returns new instance of SignTool SignTool with default encoding parameters.
func DefaultSignTool() *SignTool {
return &SignTool{
B2A: base64.StdEncoding.EncodeToString,
A2B: base64.StdEncoding.DecodeString,
}
}
// DecodePrivateKey decodes privage key into Elliptic Curve Digital Signature Algorithm private key.
func (t *SignTool) DecodePrivateKey(b []byte) (*ecdsa.PrivateKey, error) {
var privateKeyPemBlock *pem.Block
for {
privateKeyPemBlock, b = pem.Decode(b)
if privateKeyPemBlock == nil {
break
}
if privateKeyPemBlock.Type == ecPrivateKeyBlockType {
ret, err := ParseCustomECPrivateKey(privateKeyPemBlock.Bytes)
if err != nil {
return nil, err
}
return ret, err
}
}
return nil, fmt.Errorf("failed to find private key block")
}
// Sign signs string with specified private key.
func (t *SignTool) Sign(key *ecdsa.PrivateKey, str string) (string, error) {
hash := sha256.Sum256([]byte(str))
r, s, err := ecdsa.Sign(rand.Reader, key, hash[:])
if err != nil {
return "", err
}
asn1Data := []*big.Int{r, s}
bb, err := asn1.Marshal(asn1Data)
if err != nil {
return "", err
}
ret := t.B2A(bb)
return ret, nil
}
// VerifyBytes verifies a digital signature. Returns nil if all is well or an error indicating
// what went wrong. The equivalent command at the command line is:
// echo -n 'Make America Great Again!' | openssl dgst -verify pub1.pem -signature signature.dat
func (t *SignTool) VerifyBytes(pubkey *ecdsa.PublicKey, b []byte, s string) error {
return t.VerifyBytesN([]*ecdsa.PublicKey{pubkey}, b, s)
}
// VerifyBytesN verifies with multiple public keys possibly matching.
func (t *SignTool) VerifyBytesN(pubkeys []*ecdsa.PublicKey, b []byte, s string) error {
if len(pubkeys) == 0 {
return fmt.Errorf("you must provide at least one key")
}
sigb, err := t.A2B(s)
if err != nil {
return err
}
asn1Data := make([]*big.Int, 0)
_, err = asn1.Unmarshal(sigb, &asn1Data)
if err != nil {
return err
}
if len(asn1Data) != 2 {
return fmt.Errorf("hhile decoding ASN.1 data, expected exactly 2 values, instead got %d", len(asn1Data))
}
er, es := asn1Data[0], asn1Data[1]
hash := sha256.Sum256(b)
for _, pubkey := range pubkeys {
if ecdsa.Verify(pubkey, hash[:], er, es) {
return nil
}
}
return fmt.Errorf("verification failed, no keys matched")
}
func namedCurveFromOID(oid asn1.ObjectIdentifier) elliptic.Curve {
switch {
case reflect.DeepEqual(oid, secp256k1OID):
return secp256k1
}
return nil
}
// ParseCustomECPrivateKey returns Elliptic Curve Digital Signature Algorithm private key from file content.
func ParseCustomECPrivateKey(der []byte) (key *ecdsa.PrivateKey, err error) {
var privKey ecPrivateKey
if _, err := asn1.Unmarshal(der, &privKey); err != nil {
return nil, errors.New("x509: failed to parse EC private key: " + err.Error())
}
if privKey.Version != ecPrivateKeyVersion {
return nil, fmt.Errorf("x509: unknown EC private key version %d", privKey.Version)
}
curve := namedCurveFromOID(privKey.NamedCurveOID)
if curve == nil {
return x509.ParseECPrivateKey(der)
}
k := new(big.Int).SetBytes(privKey.PrivateKey)
curveOrder := curve.Params().N
if k.Cmp(curveOrder) >= 0 {
return nil, errors.New("x509: invalid elliptic curve private key value")
}
priv := new(ecdsa.PrivateKey)
priv.Curve = curve
priv.D = k
privateKey := make([]byte, (curveOrder.BitLen()+7)/8)
// Some private keys have leading zero padding. This is invalid
// according to [SEC1], but this code will ignore it.
for len(privKey.PrivateKey) > len(privateKey) {
if privKey.PrivateKey[0] != 0 {
return nil, errors.New("x509: invalid private key length")
}
privKey.PrivateKey = privKey.PrivateKey[1:]
}
// Some private keys remove all leading zeros, this is also invalid
// according to [SEC1] but since OpenSSL used to do this, we ignore
// this too.
copy(privateKey[len(privateKey)-len(privKey.PrivateKey):], privKey.PrivateKey)
priv.X, priv.Y = curve.ScalarBaseMult(privateKey)
return priv, nil
}
// CurveParams contains the parameters of an elliptic curve and also provides
// a generic, non-constant time implementation of Curve.
type CurveParams struct {
elliptic.CurveParams
}
// IsOnCurve returns boolean if the point (x,y) is on the curve.
// Part of the elliptic.Curve interface.
func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
// y² = x³ + b
y2 := new(big.Int).Mul(y, y)
y2.Mod(y2, curve.P)
x3 := new(big.Int).Mul(x, x)
x3.Mul(x3, x)
//x3.Sub(x3, threeX)
x3.Add(x3, curve.B)
x3.Mod(x3, curve.P)
return x3.Cmp(y2) == 0
}
// affineFromJacobian reverses the Jacobian transform. See the comment at the
// top of the file. If the point is ∞ it returns 0, 0.
func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
if z.Sign() == 0 {
return new(big.Int), new(big.Int)
}
zinv := new(big.Int).ModInverse(z, curve.P)
zinvsq := new(big.Int).Mul(zinv, zinv)
xOut = new(big.Int).Mul(x, zinvsq)
xOut.Mod(xOut, curve.P)
zinvsq.Mul(zinvsq, zinv)
yOut = new(big.Int).Mul(y, zinvsq)
yOut.Mod(yOut, curve.P)
return
}
func (curve *CurveParams) addJacobian(
x1, y1, z1, x2, y2, z2 *big.Int,
) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int)
if z1.Sign() == 0 {
x3.Set(x2)
y3.Set(y2)
z3.Set(z2)
return x3, y3, z3
}
if z2.Sign() == 0 {
x3.Set(x1)
y3.Set(y1)
z3.Set(z1)
return x3, y3, z3
}
z1z1 := new(big.Int).Mul(z1, z1)
z1z1.Mod(z1z1, curve.P)
z2z2 := new(big.Int).Mul(z2, z2)
z2z2.Mod(z2z2, curve.P)
u1 := new(big.Int).Mul(x1, z2z2)
u1.Mod(u1, curve.P)
u2 := new(big.Int).Mul(x2, z1z1)
u2.Mod(u2, curve.P)
h := new(big.Int).Sub(u2, u1)
xEqual := h.Sign() == 0
if h.Sign() == -1 {
h.Add(h, curve.P)
}
i := new(big.Int).Lsh(h, 1)
i.Mul(i, i)
j := new(big.Int).Mul(h, i)
s1 := new(big.Int).Mul(y1, z2)
s1.Mul(s1, z2z2)
s1.Mod(s1, curve.P)
s2 := new(big.Int).Mul(y2, z1)
s2.Mul(s2, z1z1)
s2.Mod(s2, curve.P)
r := new(big.Int).Sub(s2, s1)
if r.Sign() == -1 {
r.Add(r, curve.P)
}
yEqual := r.Sign() == 0
if xEqual && yEqual {
return curve.doubleJacobian(x1, y1, z1)
}
r.Lsh(r, 1)
v := new(big.Int).Mul(u1, i)
x3.Set(r)
x3.Mul(x3, x3)
x3.Sub(x3, j)
x3.Sub(x3, v)
x3.Sub(x3, v)
x3.Mod(x3, curve.P)
y3.Set(r)
v.Sub(v, x3)
y3.Mul(y3, v)
s1.Mul(s1, j)
s1.Lsh(s1, 1)
y3.Sub(y3, s1)
y3.Mod(y3, curve.P)
z3.Add(z1, z2)
z3.Mul(z3, z3)
z3.Sub(z3, z1z1)
z3.Sub(z3, z2z2)
z3.Mul(z3, h)
z3.Mod(z3, curve.P)
return x3, y3, z3
}
func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
a := new(big.Int).Mul(x, x) //X1²
b := new(big.Int).Mul(y, y) //Y1²
c := new(big.Int).Mul(b, b) //B²
d := new(big.Int).Add(x, b) //X1+B
d.Mul(d, d) //(X1+B)²
d.Sub(d, a) //(X1+B)²-A
d.Sub(d, c) //(X1+B)²-A-C
d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C)
e := new(big.Int).Mul(big.NewInt(3), a) //3*A
f := new(big.Int).Mul(e, e) //E²
x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
x3.Sub(f, x3) //F-2*D
x3.Mod(x3, curve.P)
y3 := new(big.Int).Sub(d, x3) //D-X3
y3.Mul(e, y3) //E*(D-X3)
y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
y3.Mod(y3, curve.P)
z3 := new(big.Int).Mul(y, z) //Y1*Z1
z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
z3.Mod(z3, curve.P)
return x3, y3, z3
}
// ScalarMult returns k*(Bx, By) where k is a big endian integer.
// Part of the elliptic.Curve interface.
func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
Bz := new(big.Int).SetInt64(1)
x, y, z := new(big.Int), new(big.Int), new(big.Int)
for _, b := range k {
for bitNum := 0; bitNum < 8; bitNum++ {
x, y, z = curve.doubleJacobian(x, y, z)
if b&0x80 == 0x80 {
x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
}
b <<= 1
}
}
return curve.affineFromJacobian(x, y, z)
}
// ScalarBaseMult returns k*G where G is the base point of the group and k is a
// big endian integer.
// Part of the elliptic.Curve interface.
func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
return curve.ScalarMult(curve.Gx, curve.Gy, k)
}