forked from ltttpku/ADA-CM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_d_detr_vcoco.py
533 lines (475 loc) · 21 KB
/
main_d_detr_vcoco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
import os
import sys
import torch
import random
import pocket
import argparse
import torchvision
import numpy as np
import torch.distributed as dist
import torch.multiprocessing as mp
from tqdm import tqdm
from torchvision.ops.boxes import batched_nms
from torch.utils.data import (
Dataset, DataLoader,
DistributedSampler, BatchSampler
)
from detr.util import box_ops
from detr.datasets import transforms as T
from d_detr.models import build_model
import pdb
class Engine(pocket.core.DistributedLearningEngine):
def __init__(self, net, criterion, train_loader, test_loader, postprocessor, max_norm, **kwargs):
super().__init__(net, criterion, train_loader, **kwargs)
self.max_norm = max_norm
self.test_loader = test_loader
self.postprocessor = postprocessor
def _on_start(self):
ap, rec = self.eval(self.postprocessor)
if self._rank == 0:
perf = [ap.mean().item(), rec.mean().item()]
print(
f"Epoch: {self._state.epoch} =>\t"
f"mAP: {perf[0]:.4f}, mRec: {perf[1]:.4f}"
)
self.best_perf = perf[0]
def _on_start_epoch(self):
self._state.epoch += 1
self._state.net.train()
self._train_loader.batch_sampler.sampler.set_epoch(self._state.epoch)
def _on_each_iteration(self):
self._state.output = self._state.net(*self._state.inputs)
loss_dict = self._criterion(self._state.output, self._state.targets)
weight_dict = self._criterion.weight_dict
self._state.loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
self._state.optimizer.zero_grad(set_to_none=True)
self._state.loss.backward()
if self.max_norm > 0:
torch.nn.utils.clip_grad_norm_(self._state.net.parameters(), self.max_norm)
self._state.optimizer.step()
def _on_end_epoch(self):
ap, rec = self.eval(self.postprocessor)
if self._rank == 0:
perf = [ap.mean().item(), rec.mean().item()]
print(
f"Epoch: {self._state.epoch} =>\t"
f"mAP: {perf[0]:.4f}, mRec: {perf[1]:.4f}"
)
# Save checkpoints
checkpoint = {
'iteration': self._state.iteration,
'epoch': self._state.epoch,
'performance': perf,
'model_state_dict': self._state.net.module.state_dict(),
'optim_state_dict': self._state.optimizer.state_dict(),
}
if self._state.lr_scheduler is not None:
checkpoint['scheduler_state_dict'] = self._state.lr_scheduler.state_dict()
torch.save(checkpoint, os.path.join(self._cache_dir, "latest.pth"))
if perf[0] > self.best_perf:
self.best_perf = perf[0]
torch.save(checkpoint, os.path.join(self._cache_dir, "best.pth"))
if self._state.lr_scheduler is not None:
self._state.lr_scheduler.step()
@torch.no_grad()
def eval(self, postprocessors, thresh=0.1):
dataloader = self.test_loader
net = self._state.net
net.eval()
associate = pocket.utils.BoxAssociation(min_iou=0.5)
if self._rank == 0:
meter = pocket.utils.DetectionAPMeter(
80, algorithm='INT', nproc=10
)
num_gt = torch.zeros(80)
for images, targets in tqdm(dataloader, disable=(self._world_size != 1)):
images = pocket.ops.relocate_to_cuda(images)
outputs = pocket.ops.relocate_to_cpu(net(images))
scores_clt = []; preds_clt = []; labels_clt = []
detections = postprocessors(
outputs, torch.stack([t["size"] for t in targets])
)
for det, target in zip(detections, targets):
scores, labels, boxes = det.values()
keep = torch.nonzero(scores >= thresh).squeeze(1)
scores = scores[keep]
labels = labels[keep]
boxes = boxes[keep]
gt_boxes = target['boxes']
# Denormalise ground truth boxes
gt_boxes = box_ops.box_cxcywh_to_xyxy(gt_boxes)
h, w = target['size']
scale_fct = torch.stack([w, h, w, h])
gt_boxes *= scale_fct
gt_labels = target['labels']
for c in gt_labels:
num_gt[c ] += 1
# Associate detections with ground truth
binary_labels = torch.zeros(len(labels))
unique_cls = labels.unique()
for c in unique_cls:
det_idx = torch.nonzero(labels == c).squeeze(1)
gt_idx = torch.nonzero(gt_labels == c).squeeze(1)
if len(gt_idx) == 0:
continue
binary_labels[det_idx] = associate(
gt_boxes[gt_idx].view(-1, 4),
boxes[det_idx].view(-1, 4),
scores[det_idx].view(-1)
)
scores_clt.append(scores)
preds_clt.append(labels)
labels_clt.append(binary_labels)
# Collate results into one tensor
scores_clt = torch.cat(scores_clt)
preds_clt = torch.cat(preds_clt)
labels_clt = torch.cat(labels_clt)
# Gather data from all processes
scores_ddp = torch.cat(pocket.utils.all_gather(scores_clt))
preds_ddp = torch.cat(pocket.utils.all_gather(preds_clt))
labels_ddp = torch.cat(pocket.utils.all_gather(labels_clt))
if self._rank == 0:
meter.append(scores_ddp, preds_ddp, labels_ddp)
if self._world_size > 1:
num_gt = num_gt.cuda()
dist.barrier()
dist.all_reduce(num_gt, op=dist.ReduceOp.SUM)
if self._rank == 0:
meter.num_gt = num_gt.tolist()
ap = meter.eval()
max_rec = meter.max_rec
return ap, max_rec
else:
return -1, -1
class VCOCOObject(Dataset):
def __init__(self, dataset, transforms, nms_thresh=0.7):
self.dataset = dataset
self.transforms = transforms
self.nms_thresh = nms_thresh
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
# (image, target), filename = self.dataset[idx]
# boxes = torch.cat([
# target['boxes_h'],
# target['boxes_o']
# ])
# labels = torch.cat([
# torch.ones_like(target['objects']),
# target['objects']
# ])
(image, image_clip), target = self.dataset[idx]
boxes = torch.cat([
target['boxes_h'],
target['boxes_o']
])
labels = torch.cat([
torch.ones_like(target['object']),
target['object']
])
# print(labels)
# Remove overlapping ground truth boxes
keep = batched_nms(
boxes, torch.ones(len(boxes)),
labels, iou_threshold=self.nms_thresh
)
boxes = boxes[keep]
labels = labels[keep]
# Convert HICODet object indices to COCO indices
# converted_labels = torch.as_tensor([self.conversion[i.item()] for i in labels])
converted_labels = labels - 1
return image, dict(boxes=boxes, labels=converted_labels, size=target["orig_size"])
# Apply transform
image, target = self.transforms(image, dict(boxes=boxes, labels=converted_labels))
return image, target
def initialise(args):
# Load model and loss function
detr, criterion, postprocessors = build_model(args)
if os.path.exists(args.resume):
print(f"Resume from model at {args.resume}")
detr.load_state_dict(torch.load(args.resume)['model_state_dict'])
elif os.path.exists(args.pretrained):
print(f"Load pre-trained model from {args.pretrained}")
model_weights = torch.load(args.pretrained)['model']
keep = [
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84,
85, 86, 87, 88, 89, 90
]
for k in model_weights.keys():
if "class_embed" in k:
model_weights[k] = model_weights[k][keep]
detr.load_state_dict(model_weights)
# Prepare dataset transforms
normalize = T.Compose([
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
transforms_train = T.Compose([
T.RandomHorizontalFlip(),
T.ColorJitter(.4, .4, .4),
T.RandomSelect(
T.RandomResize(scales, max_size=1333),
T.Compose([
T.RandomResize([400, 500, 600]),
T.RandomSizeCrop(384, 600),
T.RandomResize(scales, max_size=1333),
])
),
normalize,
])
transforms_test = T.Compose([
T.RandomResize([800], max_size=1333),
normalize,
])
# Load dataset
from vcoco.vcoco import VCOCO
image_dir = dict(
train='mscoco2014/train2014',
val='mscoco2014/train2014',
trainval='mscoco2014/train2014',
test='mscoco2014/val2014'
)
# train_set = VCOCOObject(
# VCOCO(
# root=os.path.join('vcoco', image_dir['trainval']),
# anno_file=os.path.join('vcoco', 'instances_vcoco_{}.json'.format('trainval')
# ), target_transform=pocket.ops.ToTensor(input_format='dict')
# ), transforms_train
# )
# test_set = VCOCOObject(
# VCOCO(
# root=os.path.join('vcoco', image_dir['test']),
# anno_file=os.path.join('vcoco', 'instances_vcoco_{}.json'.format('test')
# ), target_transform=pocket.ops.ToTensor(input_format='dict')
# ), transforms_test
# )
from utils_tip_cache_and_union_finetune import DataFactory
trainset = DataFactory(name='vcoco', partition='trainval', data_root='vcoco', clip_model_name='ViT-B/16', num_classes=117)
testset = DataFactory(name='vcoco', partition='trainval', data_root='vcoco', clip_model_name='ViT-B/16')
train_set = VCOCOObject(
trainset, transforms_train
)
test_set = VCOCOObject(
testset, transforms_test
)
return detr, criterion, postprocessors['bbox'], [train_set, test_set]
def collate_fn(batch):
images = []; targets = []
for img, tgt in batch:
images.append(img)
targets.append(tgt)
return images, targets
def main(rank, args):
dist.init_process_group(
backend="nccl",
init_method="env://",
world_size=args.world_size,
rank=rank
)
# Fix seeds
seed = args.seed + dist.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.cuda.set_device(rank)
model, criterion, postprocessors, datasets = initialise(args)
train_loader = DataLoader(
dataset=datasets[0], collate_fn=collate_fn,
batch_size=args.batch_size,
num_workers=args.num_workers, pin_memory=True,
sampler=DistributedSampler(
datasets[0], num_replicas=args.world_size,
rank=rank, drop_last=True
)
)
test_loader = DataLoader(
dataset=datasets[1], collate_fn=collate_fn,
batch_size=args.batch_size,
num_workers=args.num_workers, pin_memory=True,
sampler=DistributedSampler(
datasets[1], num_replicas=args.world_size,
rank=rank, drop_last=True, shuffle=False
)
)
engine = Engine(
model, criterion, train_loader,
test_loader, postprocessors,
max_norm=args.clip_max_norm,
print_interval=args.print_interval,
cache_dir=args.output_dir
)
if args.eval:
ap, rec = engine.eval(postprocessors)
if rank == 0:
print(f"The mAP is {ap.mean().item():.4f}, the mRec is {rec.mean().item():.4f}")
return
# lr_backbone_names = ["backbone.0", "backbone.neck", "input_proj", "transformer.encoder"]
def match_name_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
param_dicts = [
{
"params":
[p for n, p in model.named_parameters()
if not match_name_keywords(n, args.lr_backbone_names)
and not match_name_keywords(n, args.lr_linear_proj_names)
and p.requires_grad],
"lr": args.lr,
}, {
"params": [p for n, p in model.named_parameters()
if match_name_keywords(n, args.lr_backbone_names) and p.requires_grad],
"lr": args.lr_backbone,
}, {
"params": [p for n, p in model.named_parameters()
if match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr * args.lr_linear_proj_mult,
}
]
optimizer = torch.optim.AdamW(
param_dicts, lr=args.lr,
weight_decay=args.weight_decay
)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
engine.update_state_key(optimizer=optimizer, lr_scheduler=lr_scheduler)
engine(args.epochs)
@torch.no_grad()
def sanity_check(args):
model, criterion, postprocessors, datasets = initialise(args)
image, target = datasets[0][0]
model = model.cuda()
image = image.cuda()
print("\nPrinting out the detection target =>")
for k, v in target.items():
print(f"{k}: {v}")
output = pocket.ops.relocate_to_cpu(model([image]))
loss_dict = criterion(output, [target])
print("\nPrinting out the computed losses =>")
for k, v in loss_dict.items():
print(f"{k}: {v.item():.4f}")
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
print("\nPrinting out the total loss =>")
print(losses.item())
scores, labels, boxes = postprocessors(output, target['size'].unsqueeze(0))[0].values()
keep = torch.nonzero(scores >= 0.2).squeeze()
if len(keep) == 0:
print("No detections above score threshold.")
sys.exit()
print("\nPrinting out the detected instances =>")
for c, s in zip(labels[keep], scores[keep]):
print(f"Class {c.item()}: {s.item():.4f}")
image = torchvision.transforms.ToPILImage()(image)
image_copy = image.copy()
pocket.utils.draw_boxes(image, boxes[keep], width=3)
image.save("image.png")
_, _, boxes = postprocessors(
dict(
pred_logits=torch.rand(1, len(target['boxes']), 80),
pred_boxes=target['boxes'].unsqueeze(0)
), target['size'].unsqueeze(0)
)[0].values()
pocket.utils.draw_boxes(image_copy, boxes, width=3)
image_copy.save("detections.png")
if __name__ == '__main__':
parser = argparse.ArgumentParser('Deformable DETR Detector', add_help=False)
# Arguments for fine-tuning
parser.add_argument('--world_size', default=8, type=int)
parser.add_argument('--eval', default=False, action='store_true')
parser.add_argument('--sanity', default=False, action="store_true")
parser.add_argument('--batch_size', default=4, type=int)
parser.add_argument('--num_workers', default=2, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--print_interval', default=100, type=int)
parser.add_argument('--output_dir', default='./checkpoints',
help='path where to save, empty for no saving')
parser.add_argument('--lr', default=2e-5, type=float)
parser.add_argument('--lr_backbone', default=2e-6, type=float)
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--lr_drop', default=40, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--data_root', default="..", type=str)
parser.add_argument('--pretrained', default='', help="load pretrained model", type=str)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--lr_backbone_names', default=["backbone.0"], type=str, nargs='+')
parser.add_argument('--lr_linear_proj_names', default=['reference_points', 'sampling_offsets'], type=str, nargs='+')
parser.add_argument('--lr_linear_proj_mult', default=0.1, type=float)
parser.add_argument('--lr_drop_epochs', default=None, type=int, nargs='+')
parser.add_argument('--sgd', action='store_true')
# Variants of Deformable DETR
parser.add_argument('--with_box_refine', default=False, action='store_true')
parser.add_argument('--two_stage', default=False, action='store_true')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--position_embedding_scale', default=2 * np.pi, type=float,
help="position / size * scale")
parser.add_argument('--num_feature_levels', default=4, type=int, help='number of feature levels')
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=1024, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=300, type=int,
help="Number of query slots")
parser.add_argument('--dec_n_points', default=4, type=int)
parser.add_argument('--enc_n_points', default=4, type=int)
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=2, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--cls_loss_coef', default=2, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--focal_alpha', default=0.25, type=float)
# dataset parameters
parser.add_argument('--port', default='1234', type=str)
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--cache_mode', default=False, action='store_true', help='whether to cache images on memory')
args = parser.parse_args()
print(args)
if args.sanity:
sanity_check(args)
sys.exit()
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = args.port
mp.spawn(main, nprocs=args.world_size, args=(args,))