-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMasterCodeofCashmereProject-main.Rmd
700 lines (559 loc) · 22 KB
/
MasterCodeofCashmereProject-main.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
---
title: "CoefPlots of ParallelTrendsTest"
author: "Peng Sun"
date: "10/03/2022"
output: html_document
---
#Load packages
```{r load packages, message=FALSE, warning=FALSE}
#install.packages("clubSandwich")
library(readr)
library(did)
library(fixest)
library(DRDID)
library(tidyverse)
library(plm)
library(stargazer)
library(sandwich)
library(lmtest)
library(jtools)
library(clubSandwich)
```
#read data
```{r}
setwd("~/R")
df2012<-read_csv("~/R/df2012_20210920.csv")
```
```{r}
# set levels of timedummy variables so that Y2012 will be used as
names(df2012)
unique(df2012$timedummy)
```
```{r}
df2012$timedummy<-fct_relevel(df2012$timedummy,levels="Y2012","Y2013","Y2014","Y2015","Y2016","Y2017","janapr18","t1","t2")
df2012$groups<-fct_relevel(df2012$groups, levels="C","A","B","D")
#set levels of groups dummies so that Group C will be used as base
unique(df2012$groups)
# set levels of period dummies so that t0 period will be used as base
df2012$periods<-fct_relevel(df2012$periods, levels="t0","t1","t2")
df2012<-df2012%>%select(-1)
names(df2012)
```
# check on data errors
```{r eval=FALSE, include=FALSE}
df2012%>% group_by(salesid) %>% filter (A+B+C+D !=1) #0
df2012%>% group_by(periods) %>% filter (t0+t1+t2 !=1) #0
df2012%>% filter(B==1)%>% count() #1236
df2012%>% filter(C==1)%>% count() #6492
df2012%>% filter(D==1)%>% count() #5412
1598+5412+6492+1236 #14738
df2012%>% filter(t0==1)%>% count() #10057
df2012%>% filter(t1==1)%>% count() #2484
df2012%>% filter(t2==1)%>% count() #2197
10057+2484+2197 #14738
#install.packages("vtable")
#library(vtable)
#vtable::sumtable(df2012)
```
```{r}
df2012<-df2012 %>%
mutate(timedummy2=case_when(year==2012~"Y2012",
year==2013~"Y2013",
year==2014~"Y2014",
year==2015~"Y2015",
year==2016~"Y2016",
year==2017~"Y2017",
janapr18==1~"Y2018janapr",
t1==1~"Yt1",
t2==1~"Yt2"))
df2012<- df2012%>%
mutate(timedummy3=as.factor(yearqrt))
class(df2012$timedummy3)
unique(df2012$timedummy3)
unique(df2012$timedummy2)
df2012<-df2012%>%
mutate(timedummy6= case_when(timedummy3=="2012 Q1"~ "Y2012Q1",
timedummy3=="2012 Q2"~ "Y2012Q2",
timedummy3=="2012 Q3"~ "Y2012Q3",
timedummy3=="2012 Q4"~ "Y2012Q4",
timedummy3=="2013 Q1"~ "Y2013Q1",
timedummy3=="2013 Q2"~ "Y2013Q2",
timedummy3=="2013 Q3"~ "Y2013Q3",
timedummy3=="2013 Q4"~ "Y2013Q4",
timedummy3=="2014 Q1"~ "Y2014Q1",
timedummy3=="2014 Q2"~ "Y2014Q2",
timedummy3=="2014 Q3"~ "Y2014Q3",
timedummy3=="2014 Q4"~ "Y2014Q4",
timedummy3=="2015 Q1"~ "Y2015Q1",
timedummy3=="2015 Q2"~ "Y2015Q2",
timedummy3=="2015 Q3"~ "Y2015Q3",
timedummy3=="2015 Q4"~ "Y2015Q4",
timedummy3=="2016 Q1"~ "Y2016Q1",
timedummy3=="2016 Q2"~ "Y2016Q2",
timedummy3=="2016 Q3"~ "Y2016Q3",
timedummy3=="2016 Q4"~ "Y2016Q4",
timedummy3=="2017 Q1"~ "Y2017Q1",
timedummy3=="2017 Q2"~ "Y2017Q2",
timedummy3=="2017 Q3"~ "Y2017Q3",
timedummy3=="2017 Q4"~ "Y2017Q4",
janapr18==1~"Y2018janapr",
t1==1~"Yt2",
t2==1~"Yt3"
))
unique(df2012$timedummy6)
df2012$timedummy6<-fct_relevel(df2012$timedummy6, levels="Y2012Q1","Y2012Q2","Y2012Q3","Y2012Q4","Y2013Q1","Y2013Q2","Y2013Q3","Y2013Q4","Y2014Q1","Y2014Q2","Y2014Q3","Y2014Q4","Y2015Q1","Y2015Q2","Y2015Q3","Y2015Q4","Y2016Q1","Y2016Q2","Y2016Q3","Y2016Q4","Y2017Q1","Y2017Q2","Y2017Q3","Y2017Q4","Y2018janapr","Yt2","Yt3")
```
```{r}
df2012_mutated <- df2012
df2012_mutated$contour=replace_na(df2012_mutated$contour,"Unreported")
df2012_mutated$deck=replace_na(df2012_mutated$deck,"Unreported")
df2012_mutated$roof_material=replace_na(df2012_mutated$roof_material,"Unreported")
df2012_mutated$wall_material=replace_na(df2012_mutated$wall_material,"Unreported")
df2012_mutated$building_age=replace_na(df2012_mutated$building_age,"Unreported")
df2012_mutated$land_area=replace_na(df2012_mutated$land_area,0.069)
df2012_mutated$floor_area=replace_na(df2012_mutated$floor_area,136)
# use a mean for land_area and floor_are
```
```{r}
#df2012_mutated$garages_mainroof=replace_na(df2012_mutated$garages_mainroof,"Unreported")
```
```{r}
```
```{r}
garage=df2012_mutated$garages_mainroof
```
```{r}
which(is.na(garage))
```
```{r}
# replace msising values with Unreported
garage[is.na(garage)]<-"Unreported"
```
```{r}
which(is.na(garage))
```
```{r}
df2012_mutated$garages_mainroof<-garage
```
```{r}
#ABCD_t1<-subset(df2012,df2012$t2!=1)
#ABCD_t2<-subset(df2012,df2012$t0!=1)
#ABCD_t1_mutated<-subset(df2012_mutated,df2012_mutated$t2!=1)
#ABCD_t2_mutated<-subset(df2012_mutated,df2012_mutated$t0!=1)
df2012_ABC<-subset(df2012, df2012$D!=1)
df2012_BC_3p=subset(df2012_ABC, df2012_ABC$A!=1)
df2012_AC=subset(df2012_ABC,df2012_ABC$B!=1)
df2012_ABC_mutated<-subset(df2012_mutated, df2012_mutated$D!=1)
df2012_BC_3p_mutated=subset(df2012_ABC_mutated, df2012_ABC_mutated$A!=1)
df2012_AC_mutated=subset(df2012_ABC_mutated,df2012_ABC_mutated$B!=1)
#df2012_ABCt0t1=subset(df2012_ABC, df2012_ABC$t2!=1)
#df2012_ABCt0t1_mutated=subset(df2012_ABC_mutated, df2012_ABC_mutated$t2!=1)
#df2012_ABCt1t2=subset(df2012_ABC, df2012_ABC$t0!=1)
#df2012_ABCt1t2_mutated=subset(df2012_ABC_mutated, df2012_ABC_mutated$t0!=1)
#df2012_BC_2p=subset(df2012_BC_3p, df2012_BC_3p$t0!=1)
#df2012_BC_2p_mutated=subset(df2012_BC_3p_mutated,df2012_BC_3p_mutated$t0!=1)
#df2012_ACt0t1=subset(df2012_AC,df2012_AC$t2!=1)
#df2012_ACt0t1_mutated=subset(df2012_AC_mutated,df2012_AC_mutated$t2!=1)
#df2012_ACt1t2=subset(df2012_AC,df2012_AC$t0!=1)
#df2012_ACt1t2_mutated=subset(df2012_AC_mutated,df2012_AC_mutated$t0!=1)
```
# With 2012 dataset
```{r}
unique(df2012$bedrooms_min)
```
```{r}
# check the number of small houses with only one bedroom
library(janitor)
tabyl(df2012, groups, bedrooms_min)
```
```{r}
ggplot(data=df2012)+
geom_bar(mapping=aes(x=groups, fill=periods), position="dodge")+
theme(axis.text.x = element_text(angle = 0, size=14), plot.title = element_text(size = 16), axis.title=element_text(size = 16))
```
```{r}
summary_groupmean<- df2012 %>%
group_by(groups,periods) %>%
summarise(meanlp = mean(lp))
table(summary_groupmean)
```
# plot of group mean over time
```{r}
library(ggplot2)
library(tidyverse)
groupmean <- df2012 %>%
group_by(groups,timedummy2) %>%
summarize(meanlp = mean(lp))
#C t1' 13.036364
#C t2' 13.37316
plot_parallel_trend <- groupmean %>%
ggplot(aes(timedummy2, meanlp, color=groups))+
geom_line(aes(group=groups), alpha=5) +
geom_vline(xintercept ="Y2018janapr" ) +
geom_vline(xintercept ="Yt1" )+theme()
plot_parallel_trend
```
```{r}
ggplot(data=df2012)+
geom_bar(mapping=aes(x=periods, fill=groups), position="dodge")+
theme(axis.text.x = element_text( size=14), plot.title = element_text(size = 16), axis.title=element_text(size = 16))
```
```{r}
ggplot(data=df2012)+
geom_bar(mapping=aes(x=timedummy2, fill=groups), position="dodge")
```
```{r}
ggplot(data=df2012)+
geom_bar(mapping=aes(x=timedummy2, fill=groups), position="dodge")+
coord_flip()
```
```{r}
ggplot(data=df2012, aes(x=df2012$gross_sale_price.y))+
geom_density()+
theme(axis.text.x = element_text( size=14), plot.title = element_text(size = 16), axis.title=element_text(size = 16))
```
```{r}
ggplot(data=df2012, aes(x=lp))+
geom_density()+
theme(axis.text.x = element_text( size=14), plot.title = element_text(size = 16), axis.title=element_text(size = 16))
```
```{r}
ggplot(data=df2012, aes(x=salesprice))+
geom_density()
```
```{r}
df2012%>% group_by(groups)%>%
ggplot(aes(x=lp))+
geom_density()+facet_wrap(~groups)
```
# Define Periods Name as Period_t1, t2 and t3, instead of t0, t1 and t2, and create periods2 as the new category variable.
```{r}
df2012$Period_t1<-df2012$t0
df2012$Period_t2<-df2012$t1
df2012$Period_t3<-df2012$t2
df2012$periods2<-case_when(df2012$Period_t1==1~"t1",
df2012$Period_t2==1~"t2",
df2012$Period_t3==1~"t3")
```
```{r}
df2012%>% group_by(periods2)%>%
ggplot(aes(x=groups, y=lp))+
geom_boxplot()+facet_wrap(~periods2)+
theme(axis.text.x = element_text(size=14), plot.title = element_text(size = 16), axis.title=element_text(size = 16))
```
```{r}
df2012%>% group_by(groups)%>%
ggplot(aes(x=periods2, y=lp))+
geom_boxplot()+facet_wrap(~groups)+
theme(axis.text.x = element_text( size=14), plot.title = element_text(size = 16), axis.title=element_text(size = 16))
```
```{r}
df2012%>% group_by(groups)%>%
ggplot(aes(x=lp))+
geom_density()+facet_wrap(~groups+periods, nrow =4)
```
```{r}
library(ggplot2)
groupmean <- df2012 %>%
group_by(groups,yearqrt) %>%
summarise(meanlp = mean(lp))
groupmean %>%
ggplot(aes(yearqrt, meanlp, color=groups))+
geom_line(aes(group=groups), alpha=1) +
theme(axis.text.x = element_text(angle = 90))
```
```{r}
#View(groupmean)
```
```{r}
mean <- df2012 %>%
group_by(groups,yearqrt) %>%
summarise(meanprice = mean(salesprice))
mean%>%
ggplot(aes(yearqrt, meanprice, color=groups))+
geom_line(aes(group=groups),alpha=1) +
theme(axis.text.x = element_text(angle = 90))
```
```{r}
write.csv(df2012, "chapter1_df2012.csv")
```
```{r}
write.csv(df2012_mutated, "chapter1_df2012mutated.csv")
```
#column 1
```{r}
plm_1<-plm(lp~t1+t2+A+B+D+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D,data=df2012, model="pooling", index=c("houseid","year") )
summary(plm_1)
```
```{r}
coefplot(plm_1,keep=c("t1:A","t2:A","t1:B","t2:B","t1:D","t2:D"), ylim=c(-0.4,0.4), axis.text.x = element_text(size=14))
```
#Column 2
```{r}
lm_housefeature2<-lm(lp~t1+t2+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D+floor_area+land_area+bedrooms_min+as.factor(building_age)+ as.factor(deck)+ as.factor(wall_material)
+as.factor(roof_material)+as.factor(garages_mainroof)+ as.factor(contour)+as.factor(timedummy2) +as.factor(suburb),data=df2012_mutated)
summary(lm_housefeature2)
```
```{r}
coefplot(lm_housefeature2,keep=c("t1:A","t2:A","t1:B","t2:B","t1:D","t2:D"), ylim=c(-0.4,0.4), axis.text.x = element_text(size=14))
```
#Column 3, these two are the same
```{r}
plm_year<-plm(lp~yr2012+yr2013+yr2014+yr2015+yr2016+yr2017+t1+t2+A+B+D+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D,data=df2012, model="within",effect="individual", index=c("houseid","year"))
summary(plm_year)
```
```{r}
coefplot(plm_year,keep=c("t1:A","t2:A","t1:B","t2:B","t1:D","t2:D"), ylim=c(-0.4,0.4), axis.text.x = element_text(size=14))
```
```{r}
#plm_year_coef<-coef_test(plm_year, vcov="CR2", cluster=df2012$houseid, test="Satterthwaite")
```
# Column 4
```{r}
housefeature_pretrends<-plm(lp~yr2012+yr2013+yr2014+yr2015+yr2016+yr2017+yr2012*A+yr2013*A+yr2014*A+yr2015*A+yr2016*A+yr2017*A+yr2012*B+yr2013*B+yr2014*B+yr2015*B+yr2016*B+yr2017*B+yr2012*D+yr2013*D+yr2014*D+yr2015*D+yr2016*D+yr2017*D+t1+t2+A+B+D+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D+floor_area+land_area+bedrooms_min+as.factor(building_age)+ as.factor(deck)+ as.factor(wall_material)
+as.factor(roof_material)+as.factor(garages_mainroof)+ as.factor(contour)+as.factor(suburb),data=df2012_mutated,model="pooling", index=c("houseid","year"))
summary(housefeature_pretrends)
```
#calculate counterfactual values of lp for C as if groupC is also treated (losing access to CHS)
```{r}
#testC<-subset(df2012, df2012$C==1)
#install.pacakges()
```
#coef graph of Column 4
```{r}
coefplot(housefeature_pretrends,ylim=c(-0.4,0.4), keep=c("yr2012:A","yr2013:A","yr2014:A","yr2015:A","yr2016:A","yr2017:A","A:t1", "A:t2"), axis.text.x = element_text(size=14))
```
```{r}
coefplot(housefeature_pretrends,keep=c("yr2012:B","yr2013:B","yr2014:B","yr2015:B","yr2016:B","yr2017:B", "B:t1","B:t2"), axis.text.x = element_text(size=14))
```
```{r}
coefplot(housefeature_pretrends, keep=c("yr2012:D","yr2013:D","yr2014:D","yr2015:D","yr2016:D","yr2017:D", "D:t1", "D:t2"), axis.text.x = element_text(size=14))
```
# Column 5, pretrends controlled, with 2018JanApr and C as baseline
```{r}
plm_year_house_parallel2018<-plm(lp~yr2012+yr2013+yr2014+yr2015+yr2016+yr2017+yr2012*A+yr2013*A+yr2014*A+yr2015*A+yr2016*A+yr2017*A+yr2012*B+yr2013*B+yr2014*B+yr2015*B+yr2016*B+yr2017*B+yr2012*D+yr2013*D+yr2014*D+yr2015*D+yr2016*D+yr2017*D+t1+t2+A+B+D+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D,data=df2012, model="within",effect="individual", index=c("houseid","year"))
summary(plm_year_house_parallel2018)
```
```{r}
#plm_year_parallel_coef<-coef_test(plm_year_house_parallel2018, vcov="CR2", cluster=df2012$houseid, test="Satterthwaite")
```
```{r}
pooltest(housefeature_pretrends,plm_year_house_parallel2018)
```
```{r}
pooltest(plm_year_house_parallel2018, housefeature_pretrends)
```
#Coef graph of column 5
```{r}
coefplot(plm_year_house_parallel2018, keep=c("yr2012:A","yr2013:A","yr2014:A","yr2015:A","yr2016:A","yr2017:A","janapr18:A"), axis.text.x = element_text(size=14))
```
```{r}
coefplot(plm_year_house_parallel2018,keep=c("yr2012:B","yr2013:B","yr2014:B","yr2015:B","yr2016:B","yr2017:B"), axis.text.x = element_text(size=14))
```
```{r}
coefplot(plm_year_house_parallel2018, keep=c("yr2012:D","yr2013:D","yr2014:D","yr2015:D","yr2016:D","yr2017:D"), axis.text.x = element_text(size=14))
```
```{r}
# transfer coefficients into percentage for the parameters of interest
exp(-0.031601)-1#[1] -0.03110691
exp(-0.14608)-1 # -0.1359114
```
# A Vs C, T1 Vs T2+T3
```{r}
# Column 1
AC_did1<-plm(lp ~ I(t1 + t2) + A * I(t1 + t2), data = df2012_AC,
model = "pooling",index=c("houseid","year") )
summary(AC_did1)
```
```{r}
#Column 2
lm_housefeatureAC<-lm(lp~I(t1 + t2) + A * I(t1 + t2)+floor_area+land_area+bedrooms_min+as.factor(building_age)+ as.factor(deck)+ as.factor(wall_material)
+as.factor(roof_material)+as.factor(garages_mainroof)+ as.factor(contour)+as.factor(timedummy2) +as.factor(suburb),data=df2012_AC_mutated)
summary(lm_housefeatureAC)
```
```{r}
dim(df2012_AC_mutated)
8090-18
```
```{r}
#column 3
plm_AC3<-plm(lp~I(t1 + t2) + A * I(t1 + t2)+yr2013+yr2014+yr2015+yr2016+yr2017+janapr18,data=df2012_AC, model="within",effect="individual", index=c("houseid","year"))
summary(plm_AC3)
```
```{r}
# Column 4
housefeature_pretrendsAC<-plm(lp~I(t1 + t2) +A+ I(t1 + t2)*A+yr2012+yr2013+yr2014+yr2015+yr2016+yr2017+yr2012*A+yr2013*A+yr2014*A+yr2015*A+yr2016*A+yr2017*A+floor_area+land_area+bedrooms_min+as.factor(building_age)+ as.factor(deck)+ as.factor(wall_material)
+as.factor(roof_material)+as.factor(garages_mainroof)+ as.factor(contour)+as.factor(suburb),data=df2012_AC_mutated,model="pooling", index=c("houseid","year"))
summary(housefeature_pretrendsAC)
```
```{r}
# Column5
plm_year_house_parallel2018AC<-plm(lp~yr2012+yr2013+yr2014+yr2015+yr2016+yr2017+yr2012*A+yr2013*A+yr2014*A+yr2015*A+yr2016*A+yr2017*A+I(t1 + t2) +A+ A * I(t1 + t2),data=df2012_AC, model="within",effect="individual", index=c("houseid","year"))
summary(plm_year_house_parallel2018AC)
```
# generate graph for Column 4
```{r}
coefplot(housefeature_pretrendsAC,keep=c("A:yr2012","A:yr2013","A:yr2014","A:yr2015","A:yr2016","A:yr2017"), axis.text.x = element_text(size=14))
```
```{r}
coefplot(plm_year_house_parallel2018AC,
keep=c("yr2012:A","yr2013:A","yr2014:A","yr2015:A","yr2016:A","yr2017:A"), axis.text.x = element_text(size=14))
```
# BC T1+2 Vs T3
```{r}
#column 1
BCdid<-lm(lp~B*t2,data=df2012_BC_3p)
summary(BCdid)
```
```{r}
#Column 2
lm_housefeatureBC<-lm(lp~B*t2+as.factor(timedummy2)+floor_area+land_area+bedrooms_min+as.factor(building_age)+ as.factor(deck)+ as.factor(wall_material)
+as.factor(roof_material)+as.factor(garages_mainroof)+ as.factor(contour) +as.factor(suburb),data=df2012_BC_3p_mutated)
summary(lm_housefeatureBC)
```
```{r}
plm_BC4<-plm(lp~ B *t2+as.factor(timedummy2),data=df2012_BC_3p, model="within",effect="individual", index=c("houseid","year"))
summary(plm_BC4)
```
```{r}
#Column 3
plm_BC3<-plm(lp~ B *t2+yr2013+yr2014+yr2015+yr2016+yr2017+janapr18+t1+t2+B,data=df2012_BC_3p, model="within",effect="individual", index=c("houseid","year"))
summary(plm_BC3)
```
```{r}
#Column 4
housefeature_pretrendsBC<-plm(lp~yr2012+yr2013+yr2014+yr2015+yr2016+yr2017+janapr18+yr2012*B+yr2013*B+yr2014*B+yr2015*B+yr2016*B+yr2017*B+janapr18*B+ B * t2+floor_area+land_area+bedrooms_min+as.factor(building_age)+ as.factor(deck)+ as.factor(wall_material)
+as.factor(roof_material)+as.factor(garages_mainroof)+ as.factor(contour)+as.factor(suburb),data=df2012_BC_3p_mutated,model="pooling", index=c("houseid","year"))
summary(housefeature_pretrendsBC)
```
```{r}
coefplot(housefeature_pretrendsBC,keep=c("yr2012:B","yr2013:B","yr2014:B","yr2015:B","yr2016:B","yr2017:B","janapr18:B"), axis.text.x = element_text(size=14))
```
```{r}
# Column5
unique(df2012$timedummy)
plm_year_house_parallelBC<-plm(lp~yr2012+yr2013+yr2014+yr2015+yr2016+yr2017+janapr18+yr2012*B+yr2013*B+yr2014*B+yr2015*B+yr2016*B+yr2017*B+janapr18*B+ B * t2,data=df2012_BC_3p, model="within",effect="individual", index=c("houseid","year"))
summary(plm_year_house_parallelBC)
```
```{r}
coefplot(plm_year_house_parallelBC,keep=c("yr2012:B","yr2013:B","yr2014:B","yr2015:B","yr2016:B","yr2017:B","janapr18:B"), axis.text.x = element_text(size=14))
```
# Check how many houses are sold before and after each downsizing
```{r}
#generate two subsets of houses from A sold pre and post
houseAt0<-df2012%>% filter(A==1) %>% filter (t0==1) #1091 sales from 912 houses
dim(houseAt0)
length(unique(houseAt0$houseid))
houseAt1<-df2012%>% filter(A==1) %>% filter (t1==1) #257 sales from 254 houses
dim(houseAt1)
length(unique(houseAt1$houseid))
houseAt1t2<-df2012%>% filter(A==1) %>% filter (t1==1|t2==1) #507 sales from 487 houses
dim(houseAt1t2)
length(unique(houseAt1t2$houseid))
houseAt2<-df2012%>% filter(A==1) %>% filter (t2==1) #250 sales from 248 houses
dim(houseAt2)
length(unique(houseAt2$houseid))
t2A<-unique(houseAt2$houseid)
y<-unique(houseAt0$houseid)
resultAt0t2<-t2A %in% y
sort(resultAt0t2,decreasing=TRUE) #117 houses found sold in both t0 and t2
# generate two vectors for houseid from both subsets
y<-unique(houseAt0$houseid)#1091
x<-unique(houseAt1$houseid) #257
x2<-unique(houseAt1t2$houseid) #487
# check if houseid from post also appeared in
? "%in%"
resultAt1<-x %in% y # return True& False, 92 TRUEs returned
resultAt1t2<-x2 %in% y # 203 TRUES Returned
sort(resultAt1t2,decreasing=TRUE)
sort(resultAt1, decreasing=TRUE)
# example of %in% usage
#m<-c(1,12,23,45)
#n<-c(11,12,122,123,145)
#m %in% n
```
```{r}
#generate two subsets of houses from A sold pre and post
houseBt0<-df2012%>% filter(B==1) %>% filter (t0==1) #857 sales from 735 houses
dim(houseBt0)
length(unique(houseBt0$houseid))
houseBt1<-df2012%>% filter(B==1) %>% filter (t1==1) #194 sales from 187 houses
dim(houseBt1)
length(unique(houseBt1$houseid))
houseBt2<-df2012%>% filter(B==1) %>% filter (t2==1) #185 sales from 183 houses
dim(houseBt2)
length(unique(houseBt2$houseid))
houseBt1t2<-df2012%>% filter(B==1) %>% filter (t1==1|t2==1) #379 sales from 358 houses
dim(houseBt1t2)
length(unique(houseBt1t2$houseid))
# generate two vectors for houseid from both subsets
yB<-unique(houseBt0$houseid)
xB<-unique(houseBt1$houseid)
t2B<-unique(houseBt2$houseid)
resultBt0t2<-t2B %in% yB
sort(resultBt0t2,decreasing=TRUE) #82 houses found with sales in both t0 and t2
xB %in% yB #78 trues returned
xB2<-unique(houseBt1t2$houseid)
# check if houseid from post also appeared in
? "%in%"
resultBt1t2<-xB2 %in% yB # 155 TRUES Returned
sort(resultBt1t2,decreasing=TRUE)
```
```{r eval=FALSE, include=FALSE}
#generate two subsets of houses from A sold pre and post
houseCt0<-df2012%>% filter(C==1) %>% filter (t0==1) #4399 sales from 3746 houses
dim(houseCt0)
length(unique(houseCt0$houseid))
houseCt1<-df2012%>% filter(C==1) %>% filter (t1==1) #1110 sales from 1089 houses
dim(houseCt1)
length(unique(houseCt1$houseid))
houseCt1t2<-df2012%>% filter(C==1) %>% filter (t1==1|t2==1) # 2093 sales from 1976 houses
dim(houseCt1t2)
length(unique(houseCt1t2$houseid))
houseCt2<-df2012%>% filter(C==1) %>% filter (t2==1) #983 sales from 960 houses
dim(houseCt2)
length(unique(houseCt2$houseid))
t2C<-unique(houseCt2$houseid)
yC<-unique(houseCt0$houseid)
xC<-unique(houseCt1$houseid)
resultCt0t2<-t2C %in% yC
sort(resultCt0t2,decreasing=TRUE) # 388 houses with sales in both t0 and t2
# generate two vectors for houseid from both subsets
resultCt1<-xC %in% yC # trues returned
View(resultCt1)
sort(resultCt1, decreasing=TRUE) #418TRUES
xC2<-unique(houseCt1t2$houseid)
# check if houseid from post also appeared in
? "%in%"
resultCt1t2<-xC2 %in% yC # 782 TRUES Returned
sort(resultCt1t2,decreasing=TRUE)
```
```{r eval=FALSE, include=FALSE}
#generate two subsets of houses from A sold pre and post
houseDt0<-df2012%>% filter(D==1) %>% filter (t0==1) #3710 sales from 3123 houses
dim(houseDt0)
length(unique(houseDt0$houseid))
houseDt1<-df2012%>% filter(D==1) %>% filter (t1==1) #923 sales from 897 houses
dim(houseDt1)
length(unique(houseDt1$houseid))
houseDt1t2<-df2012%>% filter(D==1) %>% filter (t1==1|t2==1) # 1702 sales from 1602 houses
dim(houseDt1t2)
length(unique(houseDt1t2$houseid))
houseDt2<-df2012%>% filter(D==1) %>% filter (t2==1) #799 sales from 763 houses
dim(houseDt2)
length(unique(houseDt2$houseid))
t2D<-unique(houseDt2$houseid)
yD<-unique(houseDt0$houseid)
xD<-unique(houseDt1$houseid)
resultDt0t2<-t2D %in% yD
sort(resultDt0t2,decreasing=TRUE) # 361 houses with sales in both t0 and t2
# generate two vectors for houseid from both subsets
resultDt1<-xD %in% yD # trues returned
View(resultDt1)
sort(resultDt1, decreasing=TRUE) #367TRUES
xD2<-unique(houseDt1t2$houseid)
# check if houseid from post also appeared in
? "%in%"
resultDt1t2<-xD2 %in% yD # 706 TRUES Returned
sort(resultDt1t2,decreasing=TRUE)
```