-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw3.cs4641_kMeans_LSOA.py
175 lines (137 loc) · 6.21 KB
/
hw3.cs4641_kMeans_LSOA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#Sheena Ganju, CS 4641 HW 1
#Decision Trees
from __future__ import print_function
#info from http://scikit-learn.org/stable/modules/
#generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
#import sklearn statements
import sklearn as sklearn
from sklearn.metrics import accuracy_score
from sklearn import preprocessing
from sklearn.model_selection import cross_val_predict
from sklearn.model_selection import learning_curve
from sklearn.model_selection import train_test_split
#for graph from http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
import matplotlib.cm as cm
print(__doc__)
#k-means specific imports
from sklearn.cluster import KMeans
from sklearn.metrics import accuracy_score
#other imports
import scikitplot as skplt
import matplotlib.pyplot as plt
import csv
import numpy as np
import pandas as pd
import time
from sklearn.model_selection import validation_curve
from datetime import date
#Read data in using pandas
trainDataSet = pd.read_csv("london_crime_by_lsoa.csv", sep = ',', header = None, low_memory = False)
#encode text data to integers using getDummies
traindata = pd.get_dummies(trainDataSet)
traindata= traindata[:1000]
# Create decision Tree using major_category, month, year, to predict violent or not
# train split uses default gini node, split using train_test_split
X = traindata.values[1:, 1:]
Y = traindata.values[1:,0]
#start timer
t0= time.clock()
#cv = train_test_split(X, Y, test_size=.30, random_state= 20)
##X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.33, random_state= 20)
##
k = 2
clf = sklearn.cluster.KMeans(n_clusters= k, init='k-means++', n_init = 5, max_iter = 500)
clf = clf.fit(traindata)
##print("Labels" + clf.labels_)
##print("Cluster Centers" + clf.cluster_centers_)
##train_prediction = clf.predict(traindata)
###trainaccuracy = accuracy_score(train_prediction, Y_train)*100
##print("The training accuracy for this is " +str(trainaccuracy))
##
###precision outcomes
##from sklearn.metrics import precision_score
##from sklearn.metrics import log_loss
##precision = precision_score(Y_test, Y_prediction, average = "weighted")*100
##loss = log_loss(Y_test, Y_prediction)*100
##print("Precision: " + str(precision))
##print("Loss: " + str(loss))
##
###Visualizations for model accuracy
###Learning Curve Estimator, Cross Validation
t1= time.clock()
time = str(t1-t0)
print("Computation Time" + time)
skplt.estimators.plot_learning_curve(clf, X, Y, title = "Learning Curve: k-Means")
plt.show()
##
###Visualization for kmeans
range_n_clusters = [2,4,6, 8]
y=Y
for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, random_state=10)
cluster_labels = clusterer.fit_predict(X)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
c=colors, edgecolor='k')
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
c="white", alpha=1, s=200, edgecolor='k')
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
s=50, edgecolor='k')
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),
fontsize=14, fontweight='bold')
plt.show()