-
Notifications
You must be signed in to change notification settings - Fork 0
/
unique paths
44 lines (40 loc) · 1.29 KB
/
unique paths
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
unique paths
There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e., grid[0][0]).
The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.
Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.
The test cases are generated so that the answer will be less than or equal to 2 * 109.
Example 1
Input: m = 3, n = 7
Output: 28
Example 2:
Input: m = 3, n = 2
Output: 3
Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Down -> Down
2. Down -> Down -> Right
3. Down -> Right -> Down
class Solution {
public int uniquePaths(int m, int n) {
int[][]dp=new int[m+1][n+1];
for(int[]arr:dp){
Arrays.fill(arr,-1);
}
return helper(m,n,dp);
}
private int helper (int m,int n,int[][]dp){
if(m==1&&n==1){
return 1;
}
if(dp[m][n]!=-1){
return dp[m][n];
}
int count=0;
if(m>=1){
count=count+helper(m-1,n,dp);
}
if(n>=1){
count=count+helper(m,n-1,dp);
}
return dp[m][n]=count;
}
}