-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoctree.cpp
235 lines (209 loc) · 6.69 KB
/
octree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#include "octree.h"
#include <queue>
#include <set>
#include <stack>
Octree::Octree() { this->set8childNull(); }
Octree::~Octree() {
for (int i = 0; i < 8; i++) {
if (childs[i] != nullptr) {
delete childs[i];
}
}
}
Octree::Octree(const std::vector<float> &pointCloudArry,
Point<float> orignalPoint, float miniLength,
float currentLength) {
cellLength = currentLength;
if (currentLength <= miniLength) { //递归终止条件
data = pointCloudArry;
set8childNull();
} else { //划分为八个象限
std::vector<float> temp[8];
for (unsigned int i = 0; i < pointCloudArry.size(); i += 3) {
float x, y, z, dx, dy, dz;
x = pointCloudArry[i];
y = pointCloudArry[i + 1];
z = pointCloudArry[i + 2];
dx = x - orignalPoint.x;
dy = y - orignalPoint.y;
dz = z - orignalPoint.z;
for (int j = 0; j < 8; j++) {
if (dx * xit[j] >= 0 && dy * yit[j] >= 0 && dz * zit[j] >= 0) {
temp[j].push_back(x);
temp[j].push_back(y);
temp[j].push_back(z);
break;
}
}
}
float newCurrentLen = currentLength / 2;
for (int i = 0; i < 8; i++) {
if (temp[i].size() != 0) {
Point<float> newOrg(orignalPoint.x + xit[i] * newCurrentLen / 2,
orignalPoint.y + yit[i] * newCurrentLen / 2,
orignalPoint.z + zit[i] * newCurrentLen / 2);
// std::cout<<newOrg.x<<'\t'<<newOrg.y<<'\t'<<newOrg.z<<std::endl;
childs[i] = new Octree(temp[i], newOrg, miniLength, newCurrentLen);
} else {
childs[i] = nullptr;
}
}
}
}
void Octree::set8childNull() {
for (int i = 0; i < 8; i++) {
childs[i] = nullptr;
}
}
Point<float> Octree::getAverageOfPoints() {
if (this->data.size() != 0) {
float sum[3] = {0.0, 0.0, 0.0};
int size = data.size();
for (int i = 0; i < size; i += 3) {
for (int j = 0; j < 3; j++) {
sum[j] += data[i + j];
}
}
for (int i = 0; i < 3; i++) {
sum[i] /= (size / 3);
}
return Point<float>(sum[0], sum[1], sum[2]);
} else {
return Point<float>(0, 0, 0);
}
}
//获取当前节点的聚类平均值
std::vector<float> Octree::getDBSCANPoints() {
unsigned int thereshold = 3; //一个核心点周围最少的点数
float eps = cellLength / 5; //核心点最大距离上限
std::vector<float> result;
int size = data.size() / 3;
if (size <= thereshold) {
return data;
} else {
float *distances = new float[size * size]; //每个点之间的距离
std::vector<int> flags(size); //记录是否核心点
std::vector<bool> keyPoint(size); //关键点
std::vector<std::vector<int>> sets;
std::vector<std::vector<int>> nearby(size);
std::vector<bool> added(size);
for (unsigned int i = 0; i < size; i++) {
distances[i * size + i] = 0.0f;
flags[i] = -1;
added[i] = false;
}
//计算所有点之间的欧式距离
for (unsigned int i = 0; i < size - 1; i++) {
for (int j = i + 1; j < size; j++) {
float temp = distanceOfV3(
Point<float>(data[i * 3], data[i * 3 + 1], data[i * 3 + 2]),
Point<float>(data[3 * j], data[3 * j + 1], data[3 * j + 2]));
distances[i * size + j] = temp;
if (temp < eps) {
nearby[i].push_back(j);
nearby[j].push_back(i);
}
}
}
//找到核心点
for (unsigned int i = 0; i < size; i++) {
if (nearby[i].size() >= thereshold) {
keyPoint[i] = true;
flags[i] = i;
}
}
//找到边缘点
for (unsigned int i = 0; i < size; i++) {
if (nearby[i].size() > 0 && nearby[i].size() < thereshold) {
for (int j = 0; j < nearby[i].size(); j++) {
int temp = nearby[i][j];
if (keyPoint[temp]) {
flags[i] = temp;
break;
}
}
}
}
//并查集
for (int i = 0; i < size; i++) {
std::stack<int> s;
if (flags[i] != -1 && added[i] == false) {
s.push(i);
added[i] = true;
std::vector<int> aset;
while (!s.empty()) {
int temp = s.top();
aset.push_back(temp);
s.pop();
if (keyPoint[temp]) { //关键点可以压入的全部压栈
for (int j = 0; j < nearby[temp].size(); j++) {
if (!added[nearby[temp][j]] && keyPoint[nearby[temp][j]]) {
s.push(nearby[temp][j]);
added[nearby[temp][j]] = true;
}
}
} else { //边缘点,只将所指关键点压入
if (!added[flags[temp]]) {
s.push(flags[temp]);
added[flags[temp]] = true;
}
}
}
if (!aset.empty()) {
sets.push_back(aset);
}
}
}
//计算平均点
for (int i = 0; i < sets.size(); i++) {
float sum[3] = {0.0};
int size = sets[i].size();
for (int j = 0; j < size; j++) {
for (int k = 0; k < 3; k++) {
sum[k] += data[sets[i][j] * 3 + k];
}
}
for (int i = 0; i < 3; i++) {
result.push_back(sum[i] / size);
}
}
delete[] distances;
return result;
}
}
//计算当前的节点的曲率
float Octree::calculateCurvature() {}
float Octree::valueOfMat3(const float *mat) {
return mat[0] * (mat[4] * mat[8] - mat[5] * mat[7]) -
mat[1] * (mat[3] * mat[8] - mat[5] * mat[6]) +
mat[2] * (mat[3] * mat[7] - mat[4] * mat[6]);
}
void Octree::matrixSolver(const float mat[], float *answer) {
float D, D1, D2, D3;
D = D1 = D2 = D3 = 0.0;
float md[] = {mat[0 + 0 * 4], mat[1 + 0 * 4], mat[2 + 0 * 4],
mat[0 + 1 * 4], mat[1 + 1 * 4], mat[2 + 1 * 4],
mat[0 + 2 * 4], mat[1 + 2 * 4], mat[2 + 2 * 4]};
float md1[] = {mat[3 + 0 * 4], mat[1 + 0 * 4], mat[2 + 0 * 4],
mat[3 + 1 * 4], mat[1 + 1 * 4], mat[2 + 1 * 4],
mat[3 + 2 * 4], mat[1 + 2 * 4], mat[2 + 2 * 4]};
float md2[] = {mat[0 + 0 * 4], mat[3 + 0 * 4], mat[2 + 0 * 4],
mat[0 + 1 * 4], mat[3 + 1 * 4], mat[2 + 1 * 4],
mat[0 + 2 * 4], mat[3 + 2 * 4], mat[2 + 2 * 4]};
float md3[] = {mat[0 + 0 * 4], mat[1 + 0 * 4], mat[3 + 0 * 4],
mat[0 + 1 * 4], mat[1 + 1 * 4], mat[3 + 1 * 4],
mat[0 + 2 * 4], mat[1 + 2 * 4], mat[3 + 2 * 4]};
D = valueOfMat3(md);
D1 = valueOfMat3(md1);
D2 = valueOfMat3(md2);
D3 = valueOfMat3(md3);
answer[0] = D1 / D;
answer[1] = D2 / D;
answer[2] = D3 / D;
}
float Octree::distanceOfV3(Point<float> a, Point<float> b) {
float dx = a.x - b.x;
float dy = a.y - b.y;
float dz = a.z - b.z;
return sqrt(dx * dx + dy * dy + dz * dz);
}