Skip to content

Latest commit

 

History

History
148 lines (106 loc) · 3.58 KB

pypi_readme.rst

File metadata and controls

148 lines (106 loc) · 3.58 KB

Getting Started

This document will show you how to install and run Scikit-ribo.

What is Scikit-ribo

Scikit-ribo is an open-source software for accurate genome-wide A-site prediction and translation efficiency inference from Riboseq and RNAseq data.

Source Code: https://github.com/hanfang/scikit-ribo

Introduction

Scikit-ribo has two major modules:

  • Ribosome A-site location prediction using random forest with recursive feature selection
  • Translation efficiency inference using a codon-lvel generalized linear model with ridge penalty

A complete analysis with scikit-ribo has two major procedures:

  • The data pre-processing step to prepare the ORFs, codons for a genome: scikit-ribo-build.py
  • The actual model training and fitting: scikit-ribo-run.py

Detailed workflow

/images/methods.png

Inputs

  • The alignment of Riboseq reads (bam)
  • Gene-level quantification of RNA-seq reads (from either Salmon or Kallisto)
  • A gene annotation file (gtf)
  • A reference genome for the model organism of interest (fasta)

Output

  • Translation efficiency estimates for the genes
  • Translation elongation rate for 61 sense codons
  • Ribosome profile plots for each gene
  • Diagnostic plots of the models

Cite

Fang et al, "Scikit-ribo: Accurate inference and robust modelling of translation dynamics at codon resolution" (Preprint coming up)

Contact

Han Fang

Stony Brook University & Cold Spring Harbor Laboratory

Environment

  • Python3
  • Linux
  • Recommend setting up your environment with Conda

Dependencies

  • Command-line pacakges:
Python package Version >=
bedtools 2.26.0
  • Python package:
Python package Version >=
colorama 0.3.7
glmnet_py 0.1.0b
gffutils 0.8.7.1
matplotlib 1.5.1
numpy 1.11.2
pandas 0.19.2
pybedtools 0.7.8
pyfiglet 0.7.5
pysam 0.9.1.4
scikit_learn 0.18
scipy 0.18.1
seaborn 0.7.0
termcolor 1.1.0

Note: When using pip install scikit-ribo, all the following dependencies will be pulled and installed automatically.

Installation

Options

There are three options to install Scikit-ribo.

  1. Install Scikit-ribo with pip:

    pip install scikit-ribo
    
  2. Install Scikit-ribo with conda/biocodon:

    Coming up
    
  3. Compile from source:

    git clone https://github.com/hanfang/scikit-ribo.git
    cd scikit-ribo
    python setup.py install
    

Test whether the installation is successful

Once the installation is successful, you should expect the below if you type:

scikit-ribo-run.py

/images/successful_installation.png