-
Notifications
You must be signed in to change notification settings - Fork 0
/
sphere.h
71 lines (57 loc) · 2.01 KB
/
sphere.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#ifndef SPHERE_H
#define SPHERE_H
#include "hittable.h"
#include "vec3.h"
class sphere : public hittable {
public:
sphere() {}
sphere(point3 cen, double r, shared_ptr<material> m) : center(cen), radius(r), mat_ptr(m) {};
virtual bool hit(
const ray& r, double t_min, double t_max, hit_record& rec) const override;
virtual bool bounding_box(double time0, double time1, aabb& output_box) const override;
public:
point3 center;
double radius;
shared_ptr<material> mat_ptr;
private:
static void get_sphere_uv(const point3& p, double& u, double& v) {
//p: a given point on the sphere of radius 1, centered at origin
//u: returns value of angle around the y axis
//v: returns value of angle on the y axis
// <1 0 0> yields <0.5 0.5> etc etc
auto theta = acos(-p.y());
auto phi = atan2(-p.z(), p.x()) + pi;
u = phi / (2 * pi);
v = theta / pi;
}
};
bool sphere::hit(const ray& r, double t_min, double t_max, hit_record& rec) const {
vec3 oc = r.origin() - center;
auto a = r.direction().length_squared();
auto half_b = dot(oc, r.direction());
auto c = oc.length_squared() - radius * radius;
auto discriminant = half_b * half_b - a * c;
if (discriminant < 0) return false;
auto sqrtd = sqrt(discriminant);
// Find the nearest root that lies in the acceptable range.
auto root = (-half_b - sqrtd) / a;
if (root < t_min || t_max < root) {
root = (-half_b + sqrtd) / a;
if (root < t_min || t_max < root)
return false;
}
rec.t = root;
rec.p = r.at(rec.t);
vec3 outward_normal = (rec.p - center) / radius;
rec.set_face_normal(r, outward_normal);
get_sphere_uv(outward_normal, rec.u, rec.v);
rec.mat_ptr = mat_ptr;
return true;
}
bool sphere::bounding_box(double time0, double time1, aabb& output_box) const{
output_box = aabb(
center - vec3(radius, radius, radius),
center + vec3(radius, radius, radius));
return true;
}
#endif