This repository has been archived by the owner on Dec 15, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkeras_test_frcnn.py
executable file
·322 lines (247 loc) · 10.8 KB
/
keras_test_frcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
File for testing Faster R-CNN model
"""
from __future__ import division
import argparse
import os
import pickle
import time
import numpy as np
from tensorflow import keras as keras
K = keras.backend
Input = keras.layers.Input
Model = keras.models.Model
Progbar = keras.utils.Progbar
import cv2
from keras_frcnn.networks import get_available_networks
from keras_frcnn.utils.logger import rootLogger
import keras_frcnn.roi.roi_helpers as roi_helpers
# Optimizers
OPTIMIZERS = {
'adam': keras.optimizers.Adam,
'adagrad': keras.optimizers.Adagrad,
'sgd': keras.optimizers.SGD,
'rms_prop': keras.optimizers.RMSprop
}
# Datasets
DATASETS = {'polyps_rcnn'}
# General Paths
LOG_PATH = os.path.join(os.getcwd(), 'faster_rcnn_logs/')
TF_LOG_PATH = os.path.join(os.getcwd(), 'faster_rcnn_tf_logs/')
# training settings
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description='Polyp Detection Using Faster R-CNN Network')
# general args
parser.add_argument('-d', '--dataset', type=str, default='polyps_rcnn',
help="dataset, {'" + \
"', '".join(sorted(DATASETS)) + \
"'}")
parser.add_argument('--data-dirpath', type=str, default='data/',
help='directory for storing downloaded data')
# network-related args
parser.add_argument('-a', '--architecture', type=str, default='resnet',
help="architecture name, {'" + \
"', '".join(get_available_networks()) + \
"'}")
parser.add_argument('-model_weight_path', '--model_weight_path', default='model_frcnn.hdf5',
help="Model weight path. If not specified, will give error.")
# optimization-related args
parser.add_argument('-opt', '--optim', type=str, default='adam',
help="optimizer, {'" + \
"', '".join(OPTIMIZERS.keys()) + \
"'}")
parser.add_argument('-lr', '--learning_rate', type=float, default=1e-4,
help='initial learning rate')
# Faster R-CNN related args
parser.add_argument('-n', '--num_rois', type=int, default=512,
help='Number of RoIs to process at once.')
parser.add_argument("-config_filename", "--config_filename", type=str, default="config.pickle",
help="Location to read the metadata related to the training (generated when training).")
# parse and validate parameters
args = parser.parse_args()
for k, v in args._get_kwargs():
if isinstance(v, str):
setattr(args, k, v.strip().lower())
# print arguments
rootLogger.info("Running with the following parameters:")
rootLogger.info(vars(args))
# which architecture to use {VGG16, Resnet50}
if args.architecture == 'vgg':
from keras_frcnn.networks import vgg as nn
elif args.architecture == 'resnet':
from keras_frcnn.networks import resnet as nn
else:
rootLogger.info('Not a valid model')
raise ValueError
if not args.model_weight_path: # if filename is not given
rootLogger.info('Error: path to test data must be specified. Pass --model_weight_path to command line')
config_output_filename = os.path.join(os.getcwd(), args.config_filename)
with open(config_output_filename, 'rb') as f_in:
C = pickle.load(f_in)
# turn off any data augmentation at test time
C.use_horizontal_flips = False
C.use_vertical_flips = False
C.rot_90 = False
img_path = args.data_dirpath + args.dataset + "/test/"
save_path = args.data_dirpath + args.dataset + "/rcnn_out/"
def format_img_size(img, C):
"""
Formats the image size based on config
:param img:
:param C:
:return:
"""
img_min_side = float(C.im_size)
(height, width, _) = img.shape
if width <= height:
ratio = img_min_side / width
new_height = int(ratio * height)
new_width = int(img_min_side)
else:
ratio = img_min_side / height
new_width = int(ratio * width)
new_height = int(img_min_side)
img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC)
return img, ratio
def format_img_channels(img, C):
"""
Formats the image channels based on config
:param img:
:param C:
:return:
"""
img = img[:, :, (2, 1, 0)]
img = img.astype(np.float32)
img[:, :, 0] -= C.img_channel_mean[0]
img[:, :, 1] -= C.img_channel_mean[1]
img[:, :, 2] -= C.img_channel_mean[2]
img /= C.img_scaling_factor
img = np.transpose(img, (2, 0, 1))
img = np.expand_dims(img, axis=0)
return img
def format_img(img, C):
""" formats an image for model prediction based on config """
img, ratio = format_img_size(img, C)
img = format_img_channels(img, C)
return img, ratio
# Method to transform the coordinates of the bounding box to its original size
def get_real_coordinates(ratio, x1, y1, x2, y2):
real_x1 = int(round(x1 // ratio))
real_y1 = int(round(y1 // ratio))
real_x2 = int(round(x2 // ratio))
real_y2 = int(round(y2 // ratio))
return (real_x1, real_y1, real_x2, real_y2)
class_mapping = C.class_mapping
print(class_mapping)
if 'bg' not in class_mapping:
class_mapping['bg'] = len(class_mapping)
class_mapping = {v: k for k, v in class_mapping.items()}
class_to_color = {class_mapping[v]: np.random.randint(0, 255, 3) for v in class_mapping}
C.num_rois = int(args.num_rois)
if C.network == 'resnet':
num_features = 1024
elif C.network == 'vgg':
num_features = 512
input_shape_img = (None, None, 3)
input_shape_features = (None, None, num_features)
img_input = Input(shape=input_shape_img)
roi_input = Input(shape=(C.num_rois, 4))
feature_map_input = Input(shape=input_shape_features)
# define the base network (resnet here, can be VGG, Inception, etc)
shared_layers = nn.nn_base(img_input, trainable=True)
# define the RPN, built on the base layers
num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios)
rpn_layers = nn.rpn(shared_layers, num_anchors)
classifier = nn.classifier(feature_map_input, roi_input, C.num_rois, nb_classes=len(class_mapping), trainable=True)
model_rpn = Model(img_input, rpn_layers)
model_classifier_only = Model([feature_map_input, roi_input], classifier)
model_classifier = Model([feature_map_input, roi_input], classifier)
rootLogger.info('Loading weights from {}'.format(os.path.join(os.getcwd() + '/keras_frcnn/weights/', C.model_path)))
model_rpn.load_weights(os.path.join(os.getcwd() + '/keras_frcnn/weights/', C.model_path), by_name=True)
rootLogger.info("RPN Weights Loaded")
model_classifier.load_weights(os.path.join(os.getcwd() + '/keras_frcnn/weights/', C.model_path), by_name=True)
rootLogger.info("Classifier Weights Loaded")
optimizer_rpn = OPTIMIZERS.get(args.optim, None)(lr=args.learning_rate)
optimizer_classifier = OPTIMIZERS.get(args.optim, None)(lr=args.learning_rate)
model_rpn.compile(optimizer=optimizer_rpn, loss='mse')
model_classifier.compile(optimizer=optimizer_classifier, loss='mse')
all_imgs = []
classes = {}
bbox_threshold = 0.6
visualise = True
for idx, img_name in enumerate(sorted(os.listdir(img_path))):
if not img_name.lower().endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')):
continue
rootLogger.info(img_name)
st = time.time()
filepath = os.path.join(img_path, img_name)
img = cv2.imread(filepath)
X, ratio = format_img(img, C)
# if K.image_dim_ordering() == 'tf':
X = np.transpose(X, (0, 2, 3, 1))
# get the feature maps and output from the RPN
[Y1, Y2, F] = model_rpn.predict(X)
R = roi_helpers.rpn_to_roi(Y1, Y2, C, 'tf', overlap_thresh=0.6)
# convert from (x1,y1,x2,y2) to (x,y,w,h)
R[:, 2] -= R[:, 0]
R[:, 3] -= R[:, 1]
# apply the spatial pyramid pooling to the proposed regions
bboxes = {}
probs = {}
for jk in range(R.shape[0] // C.num_rois + 1):
ROIs = np.expand_dims(R[C.num_rois * jk:C.num_rois * (jk + 1), :], axis=0)
if ROIs.shape[1] == 0:
break
if jk == R.shape[0] // C.num_rois:
# pad R
curr_shape = ROIs.shape
target_shape = (curr_shape[0], C.num_rois, curr_shape[2])
ROIs_padded = np.zeros(target_shape).astype(ROIs.dtype)
ROIs_padded[:, :curr_shape[1], :] = ROIs
ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, 0, :]
ROIs = ROIs_padded
[P_cls, P_regr] = model_classifier_only.predict([F, ROIs])
for ii in range(P_cls.shape[1]):
if np.max(P_cls[0, ii, :]) < bbox_threshold or np.argmax(P_cls[0, ii, :]) == (P_cls.shape[2] - 1):
continue
cls_name = class_mapping[np.argmax(P_cls[0, ii, :])]
if cls_name not in bboxes:
bboxes[cls_name] = []
probs[cls_name] = []
(x, y, w, h) = ROIs[0, ii, :]
cls_num = np.argmax(P_cls[0, ii, :])
try:
(tx, ty, tw, th) = P_regr[0, ii, 4 * cls_num:4 * (cls_num + 1)]
tx /= C.classifier_regr_std[0]
ty /= C.classifier_regr_std[1]
tw /= C.classifier_regr_std[2]
th /= C.classifier_regr_std[3]
x, y, w, h = roi_helpers.apply_regr(x, y, w, h, tx, ty, tw, th)
except:
pass
bboxes[cls_name].append(
[C.rpn_stride * x, C.rpn_stride * y, C.rpn_stride * (x + w), C.rpn_stride * (y + h)])
probs[cls_name].append(np.max(P_cls[0, ii, :]))
all_dets = []
for key in bboxes:
bbox = np.array(bboxes[key])
new_boxes, new_probs = roi_helpers.non_max_suppression_fast(bbox, np.array(probs[key]), overlap_thresh=0.5)
for jk in range(new_boxes.shape[0]):
(x1, y1, x2, y2) = new_boxes[jk, :]
(real_x1, real_y1, real_x2, real_y2) = get_real_coordinates(ratio, x1, y1, x2, y2)
cv2.rectangle(img, (real_x1, real_y1), (real_x2, real_y2),
(int(class_to_color[key][0]), int(class_to_color[key][1]), int(class_to_color[key][2])), 4)
textLabel = '{}: {}'.format(key, int(100 * new_probs[jk]))
all_dets.append((key, 100 * new_probs[jk]))
(retval, baseLine) = cv2.getTextSize(textLabel, cv2.FONT_HERSHEY_COMPLEX, 1, 1)
textOrg = (real_x1, real_y1 - 0)
cv2.rectangle(img, (textOrg[0] - 5, textOrg[1] + baseLine - 5),
(textOrg[0] + retval[0] + 5, textOrg[1] - retval[1] - 5), (0, 0, 0), 4)
cv2.rectangle(img, (textOrg[0] - 5, textOrg[1] + baseLine - 5),
(textOrg[0] + retval[0] + 5, textOrg[1] - retval[1] - 5), (255, 255, 255), -1)
cv2.putText(img, textLabel, textOrg, cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 0), 1)
rootLogger.info('Elapsed time = {}'.format(time.time() - st))
rootLogger.info(all_dets)
cv2.imwrite(save_path+img_name,img)