-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmainV4a.py
153 lines (116 loc) · 5.36 KB
/
mainV4a.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
'''
There might be some issues with the way error is calculated
'''
import time
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from sympy import symbols
from aruco import ArUco
from utilities import Grasp
from leap_hand_utils.dynamixel_client import *
from Motor_control_lib import Multimotor_control
utils = Grasp()
aruco = ArUco(marker_length=0.025, base_marker_id=0, object_marker_id=1)
kP = 600 # Set Kp of motors
kI = 0 # Set Ki of motors
kD = 200 # Set Kd of motors
curr_lim = 350 # Set maximum current limit
# Define motor IDs
robotIDs = [11, 13, 21, 23]
redundantIDs = [12, 14, 22, 24]
robot = Multimotor_control(IDs = robotIDs)
redundantRobot = Multimotor_control(IDs = redundantIDs)
#Activate the torque
robot.torque_activate(robotIDs)
redundantRobot.torque_activate(redundantIDs)
# Set Parameters of the motor
robot.set_motor_propotional_gain(robotIDs,np.ones(len(robotIDs)) * kP)
robot.set_motor_derivative_gain(robotIDs,np.ones(len(robotIDs)) * kD)
robot.set_motor_integrator_gain(robotIDs,np.ones(len(robotIDs)) * kI)
robot.set_motor_max_current(robotIDs,np.ones(len(robotIDs)) * curr_lim)
redundantRobot.set_motor_propotional_gain(redundantIDs,np.ones(len(redundantIDs)) * kP)
redundantRobot.set_motor_derivative_gain(redundantIDs,np.ones(len(redundantIDs)) * kD)
redundantRobot.set_motor_integrator_gain(redundantIDs,np.ones(len(redundantIDs)) * kI)
redundantRobot.set_motor_max_current(redundantIDs,np.ones(len(redundantIDs)) * curr_lim)
dt = 0.001
to = 0
tf = 1
a = 0.0375 # 37.5 mm
Kt = 0.35
timer = np.arange(to, tf + dt, dt)
trials = 100
lambda_ILC = 0.7
gamma_ILC = 0.1
t = symbols('t')
xd, xdotd, xddotd = utils.trajectory_planner(to, tf, 0, 0, 0, 0)
yd, ydotd, yddotd = utils.trajectory_planner(to, tf, 0.17, 0, 0.15, 0)
th, thd, thdd = utils.trajectory_planner(to, tf, 0, 0, 0, 0)
x = np.array([float(xd.subs(t, time)) for time in timer])
y = np.array( [float(yd.subs(t, time)) for time in timer])
theta = np.array([float(th.subs(t, time)) for time in timer])
desX = np.vstack((x, y, theta))
bodyF = [np.zeros((3, len(timer) - 1)) for _ in range(trials)]
error = [None] * trials
G = [[None] * (len(timer) - 1) for _ in range(trials)]
fingerF = [[np.zeros(4)] * (len(timer) - 1) for _ in range(trials)]
tau = [[None] * (len(timer) - 1) for _ in range(trials)]
# handJacobian = [[None] * (len(timer) - 1) for _ in range(trials)]
positions = []
for i in range(trials):
# print('Going to home position')
redundantRobot.set_operating_mode(redundantIDs, np.ones(len(redundantIDs))*3)
redundantRobot.set_goal_position([np.pi, np.pi, np.pi, np.pi], redundantIDs)
robot.set_operating_mode(robotIDs, np.ones(len(robotIDs))*3)
robot.torque_activate(robotIDs)
q1, q2 = utils.IK_2R_elbow_up(-80, 174, 103, 93)
q3, q4 = utils.IK_2R_elbow_down(80, 174, 103, 93)
offset = np.array([np.pi/2, np.pi, np.pi/2, np.pi])
robot.set_goal_position((np.radians([q1, q2, q3, q4]) + offset), robotIDs)
time.sleep(5)
robot.torque_de_activate(robotIDs)
trial_positions = []
robot.set_operating_mode(robotIDs, np.ones(len(robotIDs))*0)
robot.torque_activate(robotIDs)
for j in range(len(timer) - 1):
Q = aruco.get_marker_info()
G[i][j] = utils.grasp_matrix(Q[2], a)
resultantF = bodyF[i]
Fx = resultantF[0, j]
Fy = resultantF[1, j]
Mz = resultantF[2, j]
redundantRobot.set_goal_position([np.pi, np.pi, np.pi, np.pi], redundantIDs)
actual_positions = robot.read_positions()
phi1 = [np.radians(actual_positions[0]), np.radians(actual_positions[1])]
phi2 = [np.radians(actual_positions[2]), np.radians(actual_positions[3])]
Jh = utils.hand_jacobian(phi1, phi2, [0.103, 0.093], [0.103, 0.093], Q[2], 0, 0)
handJacobian = np.array(Jh, dtype=float)
fingerF[i][j] = np.dot((np.identity(4) - np.dot(np.linalg.pinv(np.array(G[i][j], dtype=float)), \
np.array(G[i][j], dtype=float))), np.array([[1],[1],[1],[1]])) \
+ np.dot(np.linalg.pinv(np.array(G[i][j], dtype=float)), np.array([[Fx], [Fy], [Mz]]))
handJacobianInv = np.linalg.pinv(handJacobian)
tau[i][j] = np.dot(handJacobianInv, fingerF[i][j])
goalCurrent = tau[i][j] / Kt
goalCurrent[1] = -goalCurrent[1]
goalCurrent[3] = -goalCurrent[3]
print(f'i: {i}, j:{j}, bodyF: {bodyF[i]}')
robot.set_goal_current(goalCurrent, robotIDs)
# print(f'i: {i}, j:{j}, Finger Force: {fingerF[i][j]}, Fx: {resultantF[0, j]}, Fy: {resultantF[1, j]}, Mz: {resultantF[2, j]}')
# print(f'i: {i}, j:{j}, G[i][j]: {G[i][j]}')
trial_positions.append(Q)
positions.append(trial_positions)
error[i] = np.array(desX[:, :len(timer) - 1]) - np.array(positions[i]).T
print(f"i: {i}, Error: {error[i]}")
bodyF[i + 1] = lambda_ILC * bodyF[i] + gamma_ILC * error[i]
robot.torque_de_activate(robotIDs)
# plt.figure()
# x = range(len(fingerF[i][0]))
# plt.plot(x, fingerF[i][0], label='Finger 0')
# plt.plot(x, fingerF[i][1], label='Finger 1')
# plt.plot(x, fingerF[i][2], label='Finger 2')
# plt.plot(x, fingerF[i][3], label='Finger 3')
# plt.title(f"Finger Force for Trial {i}")
# plt.xlabel("Sample")
# plt.ylabel("Force")
# plt.legend()
# plt.show()