-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
160 lines (122 loc) · 5.27 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from urlextract import URLExtract
import pandas as pd
from collections import Counter
import emoji
import re
import regex
import streamlit as st
from datetime import datetime
def fetchStats(selectedUser, dataFrame):
if selectedUser != "Overall":
dataFrame = dataFrame[dataFrame['user'] == selectedUser]
totalMessages = dataFrame.shape[0]
word = []
for message in dataFrame['message']:
if isinstance(message, str):
word.extend(message.split())
totalWords = len(word)
totalMedia = dataFrame[dataFrame['message']
== '<Media omitted>\n'].shape[0]
extractor = URLExtract()
urls = extractor.find_urls(" ".join(word))
totalURL = len(urls)
return totalMessages, totalWords, totalMedia, totalURL
def mostBusy(x):
topChatter = x['user'].value_counts().head()
topChatterPercent = round((x['user'].value_counts(
)/x.shape[0])*100, 2).reset_index().rename(columns={'index': "Name", 'user': 'Percentage'})
return topChatter, topChatterPercent
def mostCommon(selectedUser, x):
if selectedUser != "Overall":
x = x[x['user'] == selectedUser]
# remove stopwords and group notifications
withoutGN = x[x['user'] != 'default']
withoutGNMedia = withoutGN[withoutGN["message"] != '<Media omitted>\n']
stopWords = open("stopwords-hinglish.txt", "r").read()
words = []
for message in withoutGNMedia['message']:
if isinstance(message, str):
for word in message.lower().split():
if word not in stopWords:
words.append(word)
mC = Counter(words).most_common(20)
mostCommon = pd.DataFrame(mC)
mostCommon = mostCommon.rename(columns={0: 'Message', 1: 'Frequency'})
return mostCommon
def mostEmoji(selectedUser, x):
if selectedUser != 'Overall':
x = x[x['user'] == selectedUser]
emojis = []
for message in x['message']:
if isinstance(message, str):
message_emojized = emoji.emojize(message, language='alias')
emojis.extend(
[c for c in message_emojized if c in emoji.UNICODE_EMOJI['en']])
emoji_counts = Counter(emojis)
emoji_df = pd.DataFrame(list(emoji_counts.items()),
columns=['Emoji', 'Count'])
emoji_df['Emoji'] = emoji_df['Emoji'].apply(
lambda x: emoji.emojize(x, language='alias'))
emoji_df = emoji_df.sort_values(
'Count', ascending=False).reset_index(drop=True)
return emoji_df
def monthlyTimeline(selectedUser, x):
if selectedUser != "Overall":
x = x[x['user'] == selectedUser]
timeline = x.groupby(['year', 'monthNum', 'month']).count()[
'message'].reset_index()
time = []
for i in range(timeline.shape[0]):
time.append(timeline['month'][i] + "-" + str(timeline['year'][i]))
timeline['time'] = time
return timeline
def dailyTimeline(selectedUser, x):
if selectedUser != "Overall":
x = x[x['user'] == selectedUser]
x['onlyDate'] = pd.to_datetime(x['date']).dt.date
dailyTimeline = x.groupby("onlyDate").count()['message'].reset_index()
return dailyTimeline
def weekActivity(selectedUser, x):
if selectedUser != "Overall":
x = x[x['user'] == selectedUser]
weekActivity = x.groupby("dayName").count()['message'].reset_index()
return x['dayName'].value_counts(), weekActivity
def monthActivity(selectedUser, x):
if selectedUser != "Overall":
x = x[x['user'] == selectedUser]
monthActivity = x.groupby("monthName").count()['message'].reset_index()
return x['monthName'].value_counts(), monthActivity
def hourActivity(selectedUser, x):
if selectedUser != "Overall":
x = x[x['user'] == selectedUser]
return x.groupby(['dayName', 'hour'])['message'].count(), x.groupby(['dayName', 'hour'])['message'].count().reset_index()
def messageExtractor (selectedUser, x, inputDate):
#inputDate = "20-04-2023"
if selectedUser != "Overall":
x = x[x['user'] == selectedUser]
if (len(inputDate)==10):
dd = inputDate[0:2]
mm = inputDate[3:5]
yyyy = inputDate[6:]
if (dd[0]=='0'): dd = dd[1]
if (mm[0]=='0'): mm = mm[1]
mask = (x['day'].astype(str) == dd) & (x['monthNum'].astype(str) == mm) & (x['year'].astype(str) == yyyy)
messageExtract = pd.DataFrame(x[mask])[['user', 'message']]
if (messageExtract.shape[0]>0):
messageExtract['time'] = x['hour'].astype(str) + ':' + x['minute'].astype(str)
messageExtract['message'] = messageExtract['message'].str.replace('\n', '')
#st.dataframe(messageExtract)
return messageExtract
def activity (selectedUser, x):
if selectedUser != "Overall":
x = x[x['user'] == selectedUser]
activityX = x.groupby("period").count()['message'].reset_index()
return activityX
def replyTime (selectedUser, x):
timeSelected = pd.Timedelta(0)
timeDifference = x.groupby('user')['replyTime'].mean().reset_index().sort_values('replyTime', ascending=True).head(5)
timeDifference = timeDifference[timeDifference['user'] != 'default']
if selectedUser != "Overall":
x = x[x['user'] == selectedUser]
timeSelected = timeDifference[timeDifference['user'] == selectedUser]['replyTime'].iloc[0]
return timeDifference, timeSelected