-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter3_coupled_channels.tex
1270 lines (1232 loc) · 52.8 KB
/
chapter3_coupled_channels.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[11pt]{report}
\include{begin}
\chapter{Coupled-channels method}
In this chapter, a theoretical framework which
we employ in this thesis for the description of heavy-ion reactions,
that is, the coupled-channels method is detailed.
After introducing the concept of barrier distribution for fusion and quasi-elastic
scattering, the effects of collective excitations on the barrier
distributions are presented.
\section{Coupled-channels equations}
The coupled-channels method describes the coupling of the relative motion
to the intrinsic degrees of freedom of the colliding nuclei, that is, the
excitations during the scattering process.
%The wave function in this method is represented as a superposition of various
%channel wave functions.
The coupled-channels method assumes the following Hamiltonian
\begin{eqnarray}
H = -\frac{\hbar^2}{2\mu}\nabla^2 + V_0(r) + H_0(\xi)
+ V_{\rm coup}(\bvec{r},\xi),
\end{eqnarray}
where $\bvec{r}$ is the coordinate for the relative motion between the
projectile and
the target nuclei, and $\mu$ is the reduced mass.
$H_0(\xi)$ is the intrinsic Hamiltonian, and
$\xi$ represents the internal degrees of
freedom.
$V_0(r)$ is the optical potential for the relative motion.
This includes an imaginary part to represent the loss of flux from the
considered model space.
$V_{\rm coup}(\bvec{r},\xi)$ is the coupling Hamiltonian between
the relative motion and the intrinsic degrees of freedom.
We expand $V_{\rm coup}(\bvec{r},\xi)$ in terms of spherical harmonics as
\begin{eqnarray}
V_{\rm coup}(\bvec{r},\xi) = \sum_{\lambda >0}f_{\lambda}(r)
Y_{\lambda}(\hat{\bvec{r}})\cdot T_{\lambda}(\xi),
\label{eq3.2}
\end{eqnarray}
where, the dot represents a scalar product.
The monopole term ($\lambda = 0$)
in the interaction is assumed to be contained in $V_{0}(r)$ and
not included in $V_{\rm coup}$.
Although one can assume more general expansion
$\displaystyle
V_{\rm coup}(\bvec{r},\xi) = \sum_{\alpha}\sum_{\lambda >0}f_{\lambda}^{\alpha}(r)
Y_{\lambda}(\hat{\bvec{r}})\cdot T_{\lambda}^{\alpha}(\xi),
$ it does not alter the following discussion. Thus, we adopt the expansion
(\ref{eq3.2}) here for simplicity.
Let $\epsilon_{n I}$ and $\phi_{n I}(\xi)$ be the eigenvalues and the
eigenfunctions of $H_0(\xi)$ with the spin $I$, respectively, that is,
\begin{eqnarray}
H_0(\xi) \phi_{n I}(\xi) = \epsilon_{n I}\phi_{n I}(\xi).
\end{eqnarray}
Here, $n$ represents any quantum number besides the angular momentum.
Since the total angular momentum and its z component are good quantum
numbers, we consider a wave function whose total angular momentum is $J$
and its z component is $M$, and denote it by $\Psi_{JM}(\bvec{r},\xi)$.
We construct a basis to expand the total wave function $\Psi_{JM}(\bvec{r},\xi)$
as
\begin{eqnarray}
\left[Y_\ell(\hat{\bvec{r}})\phi_{n I}(\xi)\right]^{(JM)}
= \sum_{m_\ell,m_I}\langle \ell m_\ell I m_I|JM\rangle
Y_{\ell m_\ell}(\hat{\bvec{r}}) \phi_{n Im_I}(\xi).
\end{eqnarray}
Using this basis,
$\Psi_{JM}({\bvec{r}},\xi)$ is expanded as
\begin{eqnarray}
\Psi_{JM}({\bvec{r}},\xi) = \sum_{n,\ell,I}\frac{u_{n\ell I}^J(r)}{r}
\left[Y_{\ell}(\hat{\bvec{r}})\phi_{n I}(\xi)\right]^{(JM)}.
\end{eqnarray}
By substituting this expansion to the Schr\"odinger equation for
$\Psi_{JM}({\bvec{r}},\xi)$
\begin{eqnarray}
H\Psi_{JM}({\bvec{r}},\xi) = E\Psi_{JM}({\bvec{r}},\xi)
\end{eqnarray}
and taking an inner product with
$\left[Y_{\ell}(\hat{\bvec{r}})\phi_{n I}(\xi)\right]^{(JM)}$
on the both hand sides,
one obtains the
following coupled-channels equations
\begin{eqnarray}
\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2}
+ \frac{\ell(\ell+1)\hbar^2}{2\mu r^2} + V_0(r) - E + \epsilon_{n I}\right]
u_{n \ell I}^J(r)
+ \sum_{n^\prime,\ell^\prime,I^\prime}
V_{n\ell I,n^\prime\ell^\prime I^\prime}^J(r)
u_{n^\prime \ell^\prime I^\prime}^J(r) = 0.
\end{eqnarray}
Here,
\begin{align}
V_{n\ell I,n^\prime\ell^\prime I^\prime}^J(r)
&= \left\langle\left[Y_{\ell}\phi_{n I}\right]^{(JM)} \left|
V_{\rm coup}(\bvec{r},\xi) \right|
\left[Y_{\ell^\prime}\phi_{n^\prime I^\prime}\right]^{(JM)} \right\rangle \\
&= \sum_{\lambda} f_{\lambda}(r) (-1)^{\ell-\ell^\prime}
\sqrt{\frac{(2\ell^\prime+1)(2\lambda+1)}{4\pi}}
\langle\ell^\prime 0\lambda 0|\ell 0\rangle
W(J\ell^\prime I\lambda;I^\prime\ell)
\langle \phi_{n I} || T_{\lambda} || \phi_{n^\prime I^\prime} \rangle
\end{align}
is a coupling matrix element which induces the excitations during the collision.
In this expression, $W(abcd;ef)$ represents the Racah coefficient and the reduced
matrix element is defined by
\begin{eqnarray}
\langle j^\prime m^\prime | T_{k q} | jm \rangle
= \frac{1}{\sqrt{2j^\prime+1}}
\langle jmkq|j^\prime m^\prime \rangle
\langle j^\prime || T_k || j \rangle.
\end{eqnarray}
We impose the following boundary condition
\begin{eqnarray}
u_{n \ell I}^{J}(r) \rightarrow
H_{\ell_i}^{(-)}(k_{n_i I_i}r)\delta_{n,n_i}
\delta_{\ell,\ell_i}\delta_{I,I_i}
- \sqrt{\frac{k_{n_i I_i}}{k_{n I}}}
S_{n\ell I,n_i\ell_i I_i}^{J}H_{\ell}^{(+)}(k_{n I} r),
\end{eqnarray}
for $r \rightarrow \infty$, together with the regularity at the origin.
Here, $k_{n I} = \sqrt{2\mu(E - \epsilon_{n I})/\hbar^2}$ is the wave number for the
channel $(n,I)$, and the index $i$ represents the entrance channel.
$S_{n\ell I,n_i\ell_i I_i}^{J}$ is the nuclear
$S$-matrix, and $H_{\ell}^{(-)}(k_{n I}r)$ and
$H_{\ell}^{(+)}(k_{n I}r)$ are the incoming and
the outgoing Coulomb wave functions, respectively.
For each intrinsic channel with $(n,I)$,
one has to consider subchannels with different $\ell$
whose coupling with $I$ yields $J$.
Compared to the number of intrinsic states considered, the dimension of the
coupled-channels equations is large.
%For example, if one take into account $2^+, 4^+, 6^+$ and $8^+$ rotational
%states, the dimension of the coupled-channels equations is for
\section{Iso-centrifugal approximation}
One can reduce the dimension of the coupled-channels equations by introducing
the iso-centrifugal approximation
\cite{LR84,NRL86,NBT86,ELP87,T87,TMBR91,TAB92,AA94,GAN94,HTBB95}.
In this approximation, the orbital angular momentum $\ell$ is replaced by the total
angular momentum $J$, that is,
\begin{eqnarray}
\frac{\ell(\ell+1)\hbar^2}{2\mu r^2} \approx \frac{J(J+1)\hbar^2}{2\mu r^2}.
\end{eqnarray}
This procedure corresponds to neglecting the change of the orbital angular
momentum during the collision.
If one defines $\bar{u}_{n I}^J(r)$ as
\begin{eqnarray}
\bar{u}_{n I}^J(r) = (-1)^I\sum_{\ell}\langle J0I0|\ell 0\rangle
u_{n\ell I}^J(r),
\end{eqnarray}
the coupled-channels equations for $\bar{u}_{n I}^J(r)$ then read,
\begin{align}
\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2}
+ \frac{J(J+1)\hbar^2}{2\mu r^2} + V_0(r) - E + \epsilon_{n I}\right]
\bar{u}_{nI}^J(r) \\
= - \sum_{n^\prime,I^\prime}\sum_{\lambda}
\sqrt{\frac{2\lambda+1}{4\pi}}
&f_{\lambda}(r)
\left\langle \phi_{n I 0} \left|T_{\lambda 0}
\right| \phi_{n^\prime I^\prime 0} \right\rangle
\bar{u}_{n^\prime I^\prime}^J(r). \label{cc_iso}
\end{align}
In deriving this expression, the following formula is used\cite{Rose}
\begin{eqnarray}
\sum_{f}\sqrt{(2e+1)(2f+1)}W(abcd;ef)
\langle b0d0|f0\rangle \langle a0f0|c0\rangle
= \langle a0b0|e0\rangle \langle e0d0|c0\rangle.
\end{eqnarray}
The coupled-channels equations (\ref{cc_iso}) have the same form
as that for a spin-zero system whose coupling Hamiltonian is given by
\begin{eqnarray}
V_{\rm coup}(r,\xi) = \sum_{\lambda>0}f_{\lambda}(r)Y_{\lambda}(\hat{\bvec{r}} = 0)
\cdot T_{\lambda}(\xi)
= \sum_{\lambda>0}\sqrt{\frac{2\lambda+1}{4\pi}}
f_{\lambda}(r)T_{\lambda 0}(\xi).
\end{eqnarray}
This states that the iso-centrifugal approximation corresponds to
considering a scattering in the rotating frame where the z axis points
at each instant along the
separation vector, which is schematically represented in Fig.\ref{fig3.00}.
Notice that the direction of the z-axis is time-dependent in this picture.
In solving the reduced coupled-channels equations, we impose the following
boundary condition
\begin{eqnarray}
\bar{u}_{nI}^J(r) \rightarrow
H_{J}^{(-)}(k_{n_iI_i}r)\delta_{I,I_i}\delta_{n,n_i}
- \sqrt{\frac{k_{n_iI_i}}{k_{nI}}}S_{nI,n_iI_i}^{J}H_{J}^{(+)}(k_{nI}r)
\ \ \ \ \ {\rm as} \ \ \ \ \ r \rightarrow \infty.
\end{eqnarray}
The fusion cross sections are
identified with the absorption cross sections and are
calculated from the obtained $S$-matrix as
\begin{eqnarray}
\sigma_{\rm fus}(E) =
\frac{\pi}{k_{n_iI_i}^2}\sum_J(2J+1)
\left(1-\sum_{n,I}\left|S_{nI,n_iI_i}^J\right|^2\right).
\label {fus_cs}
\end{eqnarray}
\begin{figure}[t]
\center
\includegraphics[clip,keepaspectratio,height=42mm]{figure/chapter3/isocent.eps}
\caption{The angles in the original coordinate systems(left),
and those in the iso-centrifugal approximations(right).}
\label{fig3.00}
\end{figure}
On the other hand, the differential cross sections for the channel $(n,I)$ are
given by
\begin{eqnarray}
\frac{d\sigma_{nI}}{d\Omega} = \frac{k_{nI}}{k_{n_iI_i}}|f_{nI,n_iI_i}(\theta)|^2
\end{eqnarray}
with the scattering amplitude
\begin{eqnarray}
f_{nI,n_iI_i}(\theta) &=& \frac{1}{2i\sqrt{k_{n_iI_i}k_{nI}}}\sum_{J}
e^{i\left[\sigma_{J}(E)+\sigma_{J}(E-\epsilon_{nI})\right]}
(2J+1)P_{J}({\rm cos}\theta)
(S_{nI,n_iI_i}^{J} - \delta_{n,n_i}\delta_{I,I_i}) \\ \nonumber
&& + f_{\rm C}(\theta)\delta_{n,n_i}\delta_{I,I_i},
\end{eqnarray}
where $\sigma_{J}(E)$ and $f_{\rm C}(\theta)$ are the Coulomb phase shift and
the Coulomb scattering amplitude, respectively.
The quasi-elastic scattering cross section is then
defined by the sum of the elastic and the inelastic cross sections, that is,
\begin{eqnarray}
\frac{d\sigma_{\rm qel}}{d\Omega}
= \sum_{n,I}\frac{d\sigma_{nI}}{d\Omega}.
\end{eqnarray}
The iso-centrifugal approximation has been found to be a good approximation for
heavy-ion reactions~\cite{T87}.
In order to see the validity of this approximation, we consider the fusion reaction
of $^{24}$Mg + $^{90}$Zr system.
We take into account rotational excitations of $^{24}$Mg up to the $4^+$ state with
the excitation energy $\epsilon_2 = 1.37$ MeV and the deformation parameter
$\beta_2 = 0.505$.
In this case, for $J \ge 4$,
the dimension of the coupled-channels equations in the full angular
coupling scheme amounts to 9
[$(I,\ell) =
(0,J),(2,J),(4,J),(2,J\pm2),(4,J),(4,J\pm2),(4,J\pm4)$],
while it reduces to 3 $[I = 0, 2, 4]$ in the iso-centrifugal
approximation. If one takes into account two more rotational states
up to the $8^+$ state,
the number of the coupled-channels equations in the full angular coupling becomes 25.
In Fig.\ref{fig3.0}, we show the result of numerical calculation.
The solid blue lines and the red dashed lines show the result with and
without the iso-centrifugal approximation, respectively. Fig.\ref{fig3.0}(a) and
(b) show the fusion cross section in the linear and logarithmic scales, respectively
and Fig.\ref{fig3.0}(c) represents the fusion barrier distribution defined
in Sec.3.4.
Although one can observe some discrepancy between the two calculations for fusion
cross sections above the barrier and the fusion barrier distribution, the difference
is rather
small. This comparison shows the validity of the iso-centrifugal
approximation.
\begin{figure}[t]
\center
\includegraphics[clip,keepaspectratio,width=80mm]{figure/chapter3/fus_24Mg_90Zr_iso_cent.pdf}
\caption{Fusion cross sections and fusion barrier distribution for $^{24}$Mg +
$^{90}$Zr system. Fig. \ref{fig3.0}(a) and \ref{fig3.0}(b)
show the fusion cross section in the linear and
logarithmic scales, respectively and Fig. \ref{fig3.0}(c)
represents the fusion barrier
distribution. The red dashed lines represent the result in the full angular
coupling while the blue solid lines represent the result in the
iso-centrifugal approximation.}
\label{fig3.0}
\end{figure}
\section{Sudden tunneling limit}
We have now obtained the coupled-channels equations to be solved.
In the following, we shall see the consequence of the channel coupling.
First we consider the case where the excitation energies are neglected.
We assume that only a single mode
with $\lambda$ in the coupling Hamiltonian is involved for simplicity.
In this case, one can diagonalize the coupling matrix with a coordinate
independent matrix and decouple the coupled-channels equations.
The approximation neglecting the excitation energies is
referred to as the sudden tunneling
approximation and corresponds to assuming that
the tunneling process occurs much faster than
the internal motion of the colliding nuclei.
Here, we show that the coupled-channels equations are decoupled in this limit
and the concept of the barrier distributions naturally appears.
The coupled-channels equations in the sudden tunneling limit are given by
\begin{eqnarray}
\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2}
+ \frac{J(J+1)\hbar^2}{2\mu r^2} + V_0(r) - E\right]
u_{n}^J(r)
= - \sum_{n^\prime}
\sqrt{\frac{2\lambda+1}{4\pi}}
f_{\lambda}(r)
\left\langle \phi_{n} \left|T_{\lambda 0}
\right| \phi_{n^\prime} \right\rangle
u_{n^\prime}^J(r),
\end{eqnarray}
where, the label of the intrinsic spin $I$ are omitted for simplicity.
One can diagonalize the coupling matrix
\begin{eqnarray}
V_{nm}(r) = \sqrt{\frac{2\lambda+1}{4\pi}}f_{\lambda}(r)
\langle \phi_n | T_{\lambda0} | \phi_m \rangle
\end{eqnarray}
with a coordinate independent matrix $U$ which diagonalizes the matrix
$\langle \phi_n | T_{\lambda0} | \phi_m \rangle$, that is,
\begin{eqnarray}
U^{\dagger}VU = diag\left\{\lambda_1(r),\lambda_2(r), \cdots,
\lambda_N(r)\right\}.
\end{eqnarray}
Here, $N$ stands for the dimension of the coupled-channels equations.
Each eigenvalue of $V$ is given by the product of the eigenvalue of the matrix
$\displaystyle \sqrt{\frac{2\lambda+1}{4\pi}}\langle \phi_n | T_{\lambda0} | \phi_m \rangle$ and $f_{\lambda}(r)$.
The coupled-channels equations are then transformed to
\begin{eqnarray}
\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2}
+ \frac{J(J+1)\hbar^2}{2\mu r^2} + V_0(r) + \lambda_{\alpha}(r) - E\right]
v_{\alpha}^J(r)
= 0.
\end{eqnarray}
Here, $\bvec{v}^J(r) = U^{\dagger}\bvec{u}^J(r)$,
or $\displaystyle v_{\alpha}^J(r) = \sum_n U_{n\alpha}^{*}(r) u_n^J(r)$.
We call the channel $\alpha$ in this representation an eigenchannel and the
potential barrier given by $V(r) + \lambda_{\alpha}(r)$ an eigenbarrier.
The boundary condition for $v_{\alpha}(r)$ now reads
\begin{align}
v_{\alpha}^J(r) &\rightarrow \sum_n U_{n_i\alpha}^{*}
\left\{H_J^{(-)}(k_{n_i}r)\delta_{n,n_i} - S_{nn_i}^J H_J^{(+)}(k_nr)\right\} \\
&= U_{n_i\alpha}^{*}\left\{H_J^{(-)}(k_{n_i}r)
- \tilde{S}_{\alpha n_i}^J H_J^{(+)}(k_nr) \right\}
\end{align}
for $r \rightarrow \infty$. Here, we have removed a factor
$\displaystyle \sqrt{\frac{k_{n_i}}{k_n}}$ because it equals to unity in the sudden
tunneling limit, and $\tilde{S}_{\alpha n_i}^J$ is defined by
\begin{eqnarray}
\tilde{S}_{\alpha n_i}^J = \sum_n \frac{U_{n\alpha}^{*}}{U_{n_i\alpha}^{*}}
S_{nn_i}^J.
\end{eqnarray}
By taking an absolute square of the both hand sides of
$\displaystyle U_{n_i\alpha}^{*}\tilde{S}_{\alpha n_i}^J = \sum_nU_{n\alpha}^{*}S_{nn_i}^J$
and summing over $\alpha$, one can show
\begin{eqnarray}
\sum_n \left|S_{nn_i}^J \right|^2
= \sum_{\alpha}\left|U_{n_i\alpha}\right|^2 \left| \tilde{S}_{\alpha n_i}^J\right|^2.
\end{eqnarray}
Substitution of the above relation to Eq. (\ref{fus_cs}) gives
\begin{eqnarray}
\sigma_{\rm fus}(E)
= \sum_{\alpha} w_{\alpha} \sigma_{\rm fus}^{(\alpha)}(E)
\label{fus_sudden}
\end{eqnarray}
with the weight factor $w_{\alpha} = |U_{n_i\alpha}|^2$ and the fusion cross
section for eigenchannel $\alpha$
\begin{eqnarray}
\sigma_{\rm fus}^{(\alpha)}(E) = \frac{\pi}{k_0^2}
\sum_J(2J+1)\left(1 - \left| \tilde{S}_{\alpha n_i}^J\right|^2\right),
\end{eqnarray}
where $\displaystyle k_0 = \sqrt{\frac{2\mu E}{\hbar^2}}$.
Similarly, one can show
\begin{eqnarray}
S_{nn_i}^J = \sum_{\alpha}U_{n_i\alpha}^{*} U_{n\alpha}\tilde{S}_{\alpha n_i}^J,
\end{eqnarray}
and correspondingly, the scattering amplitude is now written as
\begin{eqnarray}
f_{n}(\theta) = \sum_{\alpha} U_{n_i\alpha}^{*}
U_{n\alpha}\tilde{f}_{\alpha}(\theta)
\end{eqnarray}
with
\begin{eqnarray}
\tilde{f}_{\alpha}(\theta)
= \frac{1}{2ik_0}\sum_J e^{2i\sigma_J} (2J+1) P_J({\rm cos}\theta)
\left(S_{\alpha n_i}^J - 1\right) + f_{\rm C}(\theta).
\end{eqnarray}
The quasi-elastic scattering cross sections are represented as
\begin{eqnarray}
\frac{d\sigma_{\rm qel}}{d\Omega} = \sum_{\alpha} w_{\alpha}
\frac{d\sigma_{\rm el}^{(\alpha)}}{d\Omega}
=\sum_{\alpha} w_{\alpha} \left| \tilde{f}_{\alpha}(\theta)\right|^2.
\end{eqnarray}
From these expressions, one can see that both the fusion cross sections and the
quasi-elastic cross sections are given by the weighted sum of the cross sections
over the eigenchannels in the sudden tunneling limit.
Some eigenchannels have the barrier lower than the original Coulomb barrier,
and the others have higher ones.
This leads to the concept of the barrier distribution for the fusion reaction and
the quasi-elastic scattering.
In the following section, we explain how the barrier distribution is extracted
from experimental fusion and quasi-elastic cross sections.
\section{Barrier distribution method}
In order to get further understanding of the experimental data for heavy-ion
reactions, Rowley, Satchler,
and Stelson introduced a method to extract distribution of
barriers directly from the experimental fusion cross sections\cite{fusionbar}.
To illustrate the method, let us consider the classical expression for the
fusion cross section. It is given by
\begin{eqnarray}
\sigma_{\rm fus}^{cl}(E)
= \pi R_{\rm B}^2 \left(1 - \frac{V_{\rm B}}{E}\right)\theta(E-V_{\rm B}),
\end{eqnarray}
where $V_{\rm B}$ is the Coulomb barrier height and $R_{\rm B}$ is the
barrier radius, that is $V(r = R_{\rm B}) = V_{\rm B}$. $\theta(x)$ is the step
function. For a derivation of this equation, see Appendix A.
From this expression, one can immediately get the classical barrier penetrability by
\begin{eqnarray}
\frac{1}{\pi R_{\rm B}^2}\frac{d(E\sigma_{\rm fus}^{cl})}{dE} = \theta(E-V_{\rm B}),
\label{eq3.35}
\end{eqnarray}
and the derivative of the penetrability gives a delta function which has a peak at
$E = V_{\rm B}$.
In quantum mechanics, the quantum tunneling effect smears the
delta function.
For example, if one approximates the potential barrier by a parabolic potential,
$V(r) \approx V_{\rm B} - \displaystyle \frac{1}{2}\mu\Omega^2(r - R_{\rm B})^2$,
the fusion cross sections are given by the following Wong formula\cite{Wong}
\begin{eqnarray}
\sigma_{\rm fus}(E) = \frac{\hbar\Omega R_{\rm B}^2}{2E}{\rm ln}
\left\{1 + {\rm exp}\left[(2\pi/\hbar\Omega)(E-V_{\rm B})\right]\right\},
\end{eqnarray}
and the second derivative of $E\sigma_{\rm fus}$ gives
\begin{eqnarray}
\frac{1}{\pi R_{\rm B}^2}\frac{d^2(E\sigma_{\rm fus})}{dE^2}
= \frac{2\pi}{\hbar\Omega}\frac{e^x}{(1+e^x)^2},
\label{bd_Wong}
\end{eqnarray}
where $x = (2\pi/\hbar\Omega)(E - V_{\rm B})$.
This quantity is called the fusion barrier distribution and has a peak at
$E = V_{\rm B}$. We show in Fig. \ref{Wong1}
the fusion cross sections and the fusion
barrier distribution of the Wong formula for $^{20}$Ne + $^{90}$Zr system.
The height, position, and curvature of the Coulomb barrier are
$V_{\rm B} = 52.0$ MeV, $R_{\rm B} = 10.4$ fm, and
$\hbar\Omega =$ 4.05 MeV, respectively.
For comparison, the
classical fusion cross sections are also shown by the dotted line.
The width of the barrier distribution is related to the curvature of the
parabola, that is, the full width half maxima(FWHM) is given by $0.56\hbar\Omega$.
For the detail, see appendix A.
\begin{figure}[t]
\begin{center}
\begin{minipage}[t]{80mm}
\includegraphics[clip,keepaspectratio,width=80mm]{figure/chapter3/fusion_Wong2.eps}
\caption{The upper panel: Fusion cross sections for $^{20}$Ne + $^{90}$Zr
system from the Wong formula (the red solid line).
The black dotted line is the classical fusion cross sections.
The lower panel: Corresponding fusion barrier distribution
defined by Eq. (\ref{bd_Wong}).}
\label{Wong1}
\end{minipage}
\end{center}
\end{figure}
In the previous section, we have seen that the fusion cross sections are give by
the weighted sum of the fusion cross sections over the eigenchannels in the
sudden tunneling limit. By taking the second derivative of
the product of $E$ and the both hand sides of
Eq. (\ref{fus_sudden}), we get
\begin{eqnarray}
D_{\rm fus}(E) =
\frac{1}{\pi R_{\rm b}^2} \frac{d^2(E\sigma_{\rm fus})}{dE^2}
= \sum_{\alpha}w_{\alpha}
\frac{1}{\pi R_{\rm b}^2} \frac{d^2(E\sigma_{\rm fus}^{(\alpha)})}{dE^2}.
\end{eqnarray}
Each term in the sum has a peak at the position of the eigenbarrier, and the
$D_{\rm fus}(E)$ is given by the weighted sum of them.
Thus, the $D_{\rm fus}(E)$ represents a distribution of eigenbarriers and is
called fusion barrier distribution.
Rowley {\it et al.} proposed that one can extract the fusion barrier
distribution from measured fusion cross sections $\sigma_{\rm
fus}(E)$\cite{fusionbar}.
Compared to the fusion cross sections themselves, the fusion barrier
distribution more clearly indicates the effect of the coupling.
In fact, it can serve for the determination of deformation
parameters\cite{LRL93}.
Note that although the fusion cross section contains the contributions from all
partial waves, the differentiation of it gives the penetrability of the
potential for s-wave as can be seen from Eq. (\ref{eq3.35}).
In the actual calculation of the fusion barrier distribution
from the fusion cross sections, one
replaces the differentiation with finite difference, that is,
the value of the barrier distribution at energy $(E_1 + 2E_2+E_3)/4$ is
calculated as
\begin{eqnarray}
\frac{d^2(E\sigma_{\rm fus})}{dE^2}
=2\left(\frac{(E\sigma_{\rm fus})_3 - (E\sigma_{\rm fus})_2}{E_3 - E_2}
- \frac{(E\sigma_{\rm fus})_2 - (E\sigma_{\rm fus})_1}{E_2 - E_1}
\right)
\left(\frac{1}{E_3 - E_1}\right),
\end{eqnarray}
where $(E\sigma_{\rm fus})_i$ are evaluated at energies $E_i$.
If one uses equal energy intervals $\Delta E = (E_2 - E_1) = (E_3 - E_2)$,
this reduces to
\begin{eqnarray}
\frac{d^2(E\sigma_{\rm fus})}{dE^2}
= \left(
\frac{(E\sigma_{\rm fus})_3 - 2(E\sigma_{\rm fus})_2 + (E\sigma_{\rm
fus})_1}{\Delta E^2}\right).
\end{eqnarray}
The error $\delta_c$ is estimated as\cite{dasgupta}
\begin{eqnarray}
\delta_c \approx \left(\frac{E}{\Delta E^2}\right)
\sqrt{
(\delta\sigma_{\rm fus}^2)_1^2 + 4(\delta\sigma_{\rm fus})_2^2
+ (\delta\sigma_{\rm fus})_3^2}.
\end{eqnarray}
The value of $\Delta E$ is usually taken about 2 MeV in the center-of-mass frame.
For calculations presented in this thesis, $\Delta E = 2$ MeV is always adopted.
A similar concept has been also applied to the quasi-elastic scattering
\cite{timmers, HR04}.
As in the case of fusion reaction, let us first consider the classical
expression for scattering. In the limit of the strong Coulomb field, the elastic
scattering cross section at $\theta = \pi$ is given by
\begin{eqnarray}
\sigma_{\rm el}^{cl}(E,\pi) = \sigma_{\rm R}(E,\pi)\theta(V_{\rm B} - E),
\end{eqnarray}
where $\sigma_{\rm R}(E,\theta)$ is the Rutherford cross section.
Thus,
$\sigma_{\rm el}^{cl}(E,\pi) / \sigma_{\rm R}(E,\pi)$ equals to
$\theta(V_{\rm B} - E)$
and this corresponds to the reflection probability.
By differentiating it with respect to energy, one gets
\begin{eqnarray}
D_{\rm qel}(E,\pi) = - \frac{d(\sigma_{\rm qel}(E,\pi)/\sigma_{\rm R}(E,\pi))}{dE} = \delta(E - V_{\rm B}).
\end{eqnarray}
Since in the sudden tunneling limit,
the quasi-elastic cross sections are represented by the weighted sum of
the elastic cross sections over the eigenchannels as in the fusion case,
$D_{\rm qel}(E,\pi)$ also gives the distribution of eigenbarriers.
Although the discussion here assumed a strong Coulomb field in the scattering,
the nuclear effect has to be taken into account for realistic systems.
In fact, the elastic cross section deviates from the Rutherford cross section
as the incident energy increases (cf. Fig. \ref{potential}).
Nevertheless, the quasi-elastic barrier distribution
exhibits a similar behavior to the
fusion barrier distribution, although the quasi-elastic barrier distribution is
usually more smeared\cite{timmers,HR04,zamrun}.
In Fig. \ref{fus_and_qel}, we show the comparison of the fusion and the
quasi-elastic barrier distributions for $^{24}$Mg + $^{90}$Zr system.
The red solid line represents the fusion barrier distribution and the blue
dashed line represents the quasi-elastic barrier distribution.
The upper panel is for the calculation without channel coupling
and the lower panel is for the calculation
which includes the rotational excitations of $^{24}$Mg up to
$4^+$ state.
All of the barrier distributions are normalized to unit area
in the energy interval between 50 and 75 MeV.
One can see that the quasi-elastic barrier distribution of the single-channel
calculation exhibits more asymmetric
behavior compared to that of the fusion,
that is, it possesses a moderate tail
at the lower energy side.
However, the behavior of the both barrier distributions is quite similar, while the
peaks in the quasi-elastic barrier distribution are somewhat smaller than those
of the fusion case.
In evaluating the quasi-elastic barrier distribution,
we replace the differentiation by finite difference as in the fusion barrier distribution.
The energy interval $\Delta E$ is taken to be 2 MeV in our calculations in this
thesis.
\begin{figure}[t]
\begin{center}
\begin{minipage}[t]{100mm}
\includegraphics[clip,keepaspectratio,width=100mm]{figure/chapter3/fusion_and_qel.pdf}
\caption{Comparison of the fusion(the red solid line) and
the quasi-elastic(the blue dashed line)
barrier distributions for $^{24}$Mg + $^{90}$Zr system. They are
normalized to unity if integrated over the energy.}
\label{fus_and_qel}
\end{minipage}
\end{center}
\end{figure}
In actual experiments, detection of the scattered particle at $\theta = \pi$ is
impossible.
However, one can correct the effect of the difference in the detection angles by
subtracting the centrifugal energy from the incident energy.
Estimating the centrifugal potential at the Coulomb turning point $r_{\rm c}$,
the effective energy is given by
\begin{eqnarray}
E_{\rm eff} = E - \frac{\lambda_{\rm c}^2\hbar^2}{2\mu r_{\rm c}^2}
= 2E\frac{{\rm sin}\frac{\theta}{2}}{1+{\rm sin}\frac{\theta}{2}},
\label{effective_E}
\end{eqnarray}
where, $\lambda_{\rm c} = \displaystyle \eta {\rm cot}\frac{\theta}{2}$ with $\eta$
being the Sommerfeld parameter, and $r_{\rm c}$ is defined by
$\displaystyle E = \frac{Z_{\rm P}Z_{\rm T}e^2}{r_{\rm c}} + \frac{\lambda_{\rm
c}^2\hbar^2}{2\mu r_{\rm c}^2}$.
While one has to take a second derivative of $E\sigma_{\rm fus}$ to extract
the fusion barrier distribution, one can get the quasi-elastic barrier
distribution by differentiating $\sigma_{\rm qel}/\sigma_{\rm R}$ one
time.
As mentioned above, the scattering angle is classically related
to the orbital angular momentum.
Therefore, by choosing the scattering at $\theta=\pi$, one can attain the
penetrability for s-wave without differentiation.
We have introduced the barrier distribution method
based on the eigenchannel representation in the sudden tunneling limit.
However, the concept of the barrier distribution has been found to be valid
even if the finite excitation energy is taken into account.
In that case, the weight factors in the eigenchannel representation become
energy dependent and change slowly with the energy\cite{HTB97}.
\section{Constant coupling approximation}
In the previous section, we have seen that the eigenchannel representation in
the sudden tunneling limit leads to
the barrier distribution method.
The eigenchannel representation
can be introduced also when
the coupling matrix is
coordinate independent. This approximation is called
a constant coupling approximation\cite{DLW83}.
In this approximation,
the coupled-channels equations read
\begin{align}
\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2}
+ \frac{J(J+1)\hbar^2}{2\mu r^2} + V_0(r) - E\right]
&u_{n}^J(r) \nonumber\\
= - \sum_{m}
&\left[
\epsilon_n \delta_{n,m} +
\sum_{\lambda}
\sqrt{\frac{2\lambda+1}{4\pi}}
f_{\lambda}^0
\left\langle \phi_{n} \left|T_{\lambda 0}
\right| \phi_{m} \right\rangle
\right]u_{m}^J(r),
\end{align}
where, $f^0_{\lambda}$ is a constant.
One can diagonalize the matrix
\begin{eqnarray}
V_{nm} =
\epsilon_n \delta_{n,m} +
\sum_{\lambda}
\sqrt{\frac{2\lambda+1}{4\pi}}
f_{\lambda}^0
\left\langle \phi_{n} \left|T_{\lambda 0}
\right| \phi_{m} \right\rangle
\end{eqnarray}
with a coordinate independent matrix as in the case of the sudden tunneling
limit, and the fusion and the quasi-elastic cross sections are given by the
weighted sum of the cross sections over the eigenchannels.
\section{Coupling to collective states}
In this section, coupling effects to collective excited states are reviewed.
\subsection{Vibrational coupling}
First we consider the vibrational coupling for a projectile nucleus.
As seen in chapter 2, in the liquid drop model, the shape of the nuclear
surface is parametrized as
\begin{eqnarray}
R = R_{\rm P} \left(
1 + \sum_{\lambda}\alpha_{\lambda}\cdot Y_{\lambda}
\right).
\end{eqnarray}
In the following discussion, we consider a particular mode $\lambda$.
The Hamiltonian for the vibration is given by (\ref{collham}).
After quantization procedure, the Hamiltonian is represented as
\begin{eqnarray}
H = \sum_{\mu}\frac{1}{2}\hbar\omega_{\lambda}b_{\lambda\mu}^{\dagger}b_{\lambda\mu},
\end{eqnarray}
where, $\omega_{\lambda}=\sqrt{C_{\lambda}/B_{\lambda}}$, and the zero-point
energy is removed.
The creation and the annihilation operators $b_{\lambda\mu}^{\dagger}$
and $b_{\lambda\mu}$ are related with $\alpha_{\lambda\mu}$ by
\begin{eqnarray}
\alpha_{\lambda\mu} = \sqrt{\frac{\hbar}{2B_{\lambda}\omega_{\lambda}}}
\left(b_{\lambda\mu}^\dagger + (-1)^\mu b_{\lambda\mu} \right).
\label{alpha_b1}
\end{eqnarray}
The deformation parameter for the
vibration with $\lambda$ is defined by the square
root of the amplitude of the zero-point vibration, that is,
\begin{align}
\beta_{\lambda}^2 &= \langle n_{\lambda} = 0 |
\sum_{\mu}\alpha_{\lambda\mu}^{\dagger}\alpha_{\lambda\mu}|
n_{\lambda} = 0 \rangle \\
&= (2\lambda+1)\frac{\hbar}{2B_{\lambda}\omega_{\lambda}}.
\end{align}
Thus, Eq. (\ref{alpha_b1}) is rewritten as
\begin{eqnarray}
\alpha_{\lambda\mu} = \frac{\beta_{\lambda}}{\sqrt{2\lambda+1}}
\left(b_{\lambda\mu}^\dagger + (-1)^\mu b_{\lambda\mu} \right).
\label{alpha_b2}
\end{eqnarray}
The nuclear potential between the colliding nuclei is given by a function of
the distance between the nuclear surface points on a line connecting the center
of each nucleus.
For spherical nuclei with the radius $R_{\rm T}$ and $R_{\rm P}$,
the distance is given by $r - R_{\rm T} - R_{\rm P}$.
If one takes into account the coupling of the projectile, the nuclear potential is
obtained by replacing $r-R_{\rm T}-R_{\rm P}$ by
$r - R_{\rm T} - R_{\rm P} - R_{\rm P}\alpha_{\lambda}\cdot Y_{\lambda}$,
that is, the nuclear potential $V_{\rm N}(r)$ is replaced by $
V_{\rm N}(r - R_{\rm P}\alpha_{\lambda}\cdot
Y_{\lambda}(\hat{\bvec{r}}))$.
In order to extract a form factor of the coupling Hamiltonian, let us assume
that the $\beta_{\lambda}$ is small and expand the potential up to the first
order term with respect to $\beta_{\lambda}$
(the linear coupling approximation)
\begin{align}
V_{\rm N}\left(r - R_{\rm P}\alpha_{\lambda}\cdot
Y_{\lambda}(\hat{\bvec{r}})
\right)
&\approx V_{\rm N}(r) - R_{\rm P}\frac{dV_{\rm N}(r)}{dr}
\alpha_{\lambda}\cdot Y_{\lambda}(\hat{\bvec{r}}).
\end{align}
The second term gives the nuclear part of the coupling Hamiltonian.
Next we consider the Coulomb part of the coupling Hamiltonian.
Let us denote the density of the vibrating projectile by $\rho_{\rm P}(\bvec{r})$.
Then, the Coulomb potential between the colliding nuclei is given by
\begin{eqnarray}
V_{\rm C}(\bvec{r}) = \int d\bvec{r}^\prime
\frac{Z_{\rm P}Z_{\rm T}e^2}
{|\bvec{r} - \bvec{r}^\prime|}
\rho_{\rm P}(\bvec{r}^\prime)
\end{eqnarray}
for $\bvec{r}$ larger than the range of $\rho_{\rm P}(\bvec{r})$.
By using the expansion formula
\begin{eqnarray}
\frac{1}{
|\bvec{r} - \bvec{r}^\prime|}
= \sum_{\lambda^\prime\mu^\prime}
\frac{4\pi}{2\lambda^\prime + 1}
\frac{r_<^{\lambda^\prime}}{r_>^{\lambda^\prime+1}}
Y_{\lambda^\prime\mu^\prime}(\hat{\bvec{r}}^\prime)
Y_{\lambda^\prime\mu^\prime}^{*}(\hat{\bvec{r}}),
\end{eqnarray}
the potential is represented as
\begin{eqnarray}
V_{\rm C}(\bvec{r}) =
\frac{Z_{\rm P}Z_{\rm T}e^2}{r}
+ \sum_{\lambda^\prime > 0} \sum_{\mu^\prime}
\frac{4\pi Z_{\rm T}e}{2\lambda^\prime+1}
Q_{\lambda\mu^\prime}
Y_{\lambda^\prime\mu^\prime}^{*}(\hat{\bvec{r}})
\frac{1}{r^{\lambda^\prime+1}},
\end{eqnarray}
where, the electric multipole operator is defined as
\begin{eqnarray}
Q_{\lambda\mu}
= \int d\bvec{r}
Z_{\rm P}e\rho_{\rm P}(\bvec{r})
r^{\lambda} Y_{\lambda\mu}(\hat{\bvec{r}}).
\end{eqnarray}
Assuming a sharp distribution for $\rho_{\rm P}(\bvec{r})$, that is,
\begin{eqnarray}
\rho_{\rm P}(\bvec{r}) = \rho_0 \theta(R(\theta,\phi) - r),\ \ \ \
\rho_0 = \frac{3}{4\pi R_{\rm P}^3},
\end{eqnarray}
$Q_{\lambda^\prime\mu^\prime}$ is given by
\begin{eqnarray}
Q_{\lambda^\prime\mu^\prime} = \frac{3Z_{\rm P}e}{4\pi}
R_{\rm P}^\lambda\alpha_{\lambda\mu^\prime}\delta_{\lambda\lambda^\prime}
\label{multipole_op}
\end{eqnarray}
up to the first order in $\alpha_{\lambda\mu}$.
Thus, the Coulomb potential reads
\begin{eqnarray}
V_{\rm C}(\bvec{r}) =
\frac{Z_{\rm P}Z_{\rm T}e^2}{r}
+
\frac{3}{2\lambda+1}Z_{\rm P}Z_{\rm T}e^2
\frac{R_{\rm P}^\lambda}{r^{\lambda+1}}
\alpha_{\lambda}\cdot Y_{\lambda}(\hat{\bvec{r}}),
\end{eqnarray}
and the second term gives the Coulomb part of the coupling Hamiltonian.
Combining the nuclear and the Coulomb potentials, the coupling Hamiltonian is given
by
\begin{eqnarray}
V_{\rm coup}(\bvec{r},\alpha_{\lambda\mu})
= f_{\lambda}(r)\alpha_{\lambda}\cdot Y_{\lambda}(\hat{\bvec{r}})
\end{eqnarray}
with the form factor
\begin{eqnarray}
f_{\lambda}(r)
=
- R_{\rm P}\frac{dV_{\rm N}(r)}{dr}
+ \frac{3}{2\lambda+1}Z_{\rm P}Z_{\rm T}e^2
\frac{R_{\rm P}^\lambda}{r^{\lambda+1}}.
\label{vib_form_factor}
\end{eqnarray}
Under the iso-centrifugal approximation, $V_{\rm coup}$ becomes
\begin{align}
V_{\rm coup}(\bvec{r}, \alpha_{\lambda\mu})
&= f_{\lambda}(r) \alpha_{\lambda}\cdot Y_{\lambda}(\hat{\bvec{r}} = 0)
\nonumber \\
&= \frac{\beta_{\lambda}}{\sqrt{4\pi}}
f_{\lambda}(r)(b_{\lambda 0}^{\dagger} + b_{\lambda 0}).
\label{Vcoup_vib}
\end{align}
At the position of the barrier $R_{\rm B}$, it holds that
$dV_0/dr = dV_{\rm N}/dr + dV_{\rm C}/dV = 0$,
that is,
\begin{eqnarray}
-\left.\frac{dV_{\rm N}}{dV}\right|_{r=R_{\rm B}}
= - \left.\frac{Z_{\rm P}Z_{\rm T}e^2}{r^2}\right|_{r=R_{\rm B}}.
\end{eqnarray}
The form factor $f_{\lambda}(r)$ is then estimated
at $r = R_{\rm B}$ as
\begin{eqnarray}
f_{\lambda}(R_{\rm B}) = -R_{\rm P} \frac{Z_{\rm P}Z_{\rm T}e^2}{R_{\rm B}^2}
+ \frac{3}{2\lambda+1}Z_{\rm P}Z_{\rm T}e^2
\frac{R_{\rm P}^\lambda}{R_{\rm B}^{\lambda+1}}.
\end{eqnarray}
One can see that the form factor is proportional to the charge product.
Therefore, the coupling strength is effectively stronger for systems which have
a larger charge product.
Although the coupled-channels equations (\ref{cc_iso}) use the basis
where the intrinsic spin $I$ is a good quantum number,
it is more efficient to work in another basis
for the vibrational excitations in the iso-centrifugal approximation\cite{KRNR93}.
Let us first consider 1-phonon states. They are given by
$\left\{b_{\lambda\mu}^{\dagger}|0\rangle\right\}_{\mu}$ and these states span
the $(2\lambda+1)$-dimensional subspace.
Among them, only a state $b_{\lambda 0}^{\dagger}|0\rangle$ can be excited
from the ground state by $V_{\rm coup}$ given in (\ref{Vcoup_vib}).
Thus, it is sufficient to take into account only one channel for 1-phonon
states.
Next consider 2-phonon states.
They are given by
$\left\{[b_{\lambda}^{\dagger}b_{\lambda}^{\dagger}]^{(IM)}|0\rangle\right\}_{IM}$.
For $\lambda=2$ case, the possible values of $I$ are 0, 2, and 4, and the states
$(0^+,2^+,4^+)$ form a triplet with the same excitation energy. The dimension of
the subspace spanned by the 2-phonon states is 15.
The set
$\left\{[b_{\lambda}^{\dagger}b_{\lambda}^{\dagger}]^{(IM)}|0\rangle\right\}_{IM}$
can be unitary transformed to a set
$\left\{b_{\lambda\mu}^{\dagger}b_{\lambda\mu^\prime}^{\dagger}|0\rangle\right\}_{\mu\mu^\prime}$.
Among them, in the iso-centrifugal approximation, only the state
$b_{\lambda 0}^{\dagger}b_{\lambda 0}^{\dagger}|0\rangle$
can be excited from the 1-phonon state $b_{\lambda 0}^{\dagger}|0\rangle$ by $V_{\rm
coup}$.
Thus, it is sufficient to take into account only one channel for 2-phonon
states.
One can progress this discussion to $n$-phonon states, and will find that
only one channel is necessary to represent $n$-phonon states
in the iso-centrifugal approximation.
Therefore, the total basis is given by
$\left\{\displaystyle \frac{1}{\sqrt{n!}}\left(b_{\lambda 0}^{\dagger}\right)^n
|0\rangle\right\}_n$.
The coupling matrix element between $n$-phonon channel and $m$-phonon channel is
then given by
\begin{eqnarray}
V_{nm}(r) = \frac{\beta_{\lambda}}{\sqrt{4\pi}}f_{\lambda}(r)
\left(
\delta_{n,m-1}\sqrt{m} + \delta_{n,m+1}\sqrt{n}
\right),
\end{eqnarray}
and the matrix is given by
\begin{eqnarray}
\displaystyle
(V_{nm}) = \frac{\beta_{\lambda}}{\sqrt{4\pi}}f_{\lambda}(r)
\left(
\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & \sqrt{2} \\
0 & \sqrt{2} & 0
\end{array}
\right),
\end{eqnarray}
if one truncates the space up to the 2-phonon channel.
As an example of the vibrational coupling, we show in Fig. \ref{fig3.1}
the calculation of the fusion reaction for
$^{32}$S + $^{90}$Zr system.
\begin{figure}[t]
\center
\includegraphics[clip,keepaspectratio,width=85mm]{figure/chapter3/fus_32S_90Zr_coll_32S.eps}
\caption{Fusion cross sections and fusion barrier distribution for $^{32}$S +
$^{90}$Zr system. The black dotted lines show the calculation without the
channel coupling, the red solid lines take into account the vibrational
excitation of $^{32}$S up to the 1-phonon state, and the blue solid lines take
into account the vibrational excitations up to the 2-phonon state.}
\label{fig3.1}
\end{figure}
Figs.\ref{fig3.1}(a) and \ref{fig3.1}(b) show the fusion cross sections in
the linear and logarithmic scales, respectively.
Fig.\ref{fig3.1}(c) shows the fusion barrier distribution.
The black dotted lines show the calculation without coupling, the red solid
lines take into account the vibrational quadrupole excitations of $^{32}$S up to
the one-phonon state, and the blue solid lines includes up to the two-phonon state.
The excitation energy and the deformation parameter
of the $2^{+}$ state of $^{32}$S
are $\epsilon_2$ = 2.23 MeV and $\beta_2$ = 0.32, respectively.
These calculations include the contribution from all order terms in $\beta_2$ in
the nuclear coupling (See Sec.3.7).
In the absence of the coupling, the barrier distribution shows a single peak at
the Coulomb barrier ($V_{\rm B}=82.5$ MeV).
One can see that by including the coupling,
the subbarrier fusion cross sections
are enhanced (Fig. \ref{fig3.1}(b)),
and the potential barrier distributes in energy.
In the case the vibrational coupling,
the lower barrier is taller than the higher one.
%Note that one should take into account more relevant collective excitations if
%one intends to reproduce the experimental data.
%Here, we show the calculation with one or two excited states of $^{32}$S in order to
%illustrate a typical feature of the vibrational coupling.
\subsection{Rotational coupling}
We next consider the rotational excitations of a deformed nucleus.
For the deformation, we take into account the quadrupole
($\lambda=2$) deformation and
the hexadecapole ($\lambda=4$) deformation of the
projectile.
The nuclear radius is then represented as
\begin{eqnarray}
R(\theta,\phi) = R_{\rm P}
\left(
1 + \alpha_2\cdot Y_2(\hat{\bvec{r}}) + \alpha_4\cdot Y_4(\hat{\bvec{r}})
\right).
\end{eqnarray}
In the intrinsic system (the body-fixed frame), the radius is expressed as
\begin{eqnarray}
R(\theta^\prime,\phi^\prime) = R_{\rm P}
\left(1 + a_2\cdot Y_2({\hat{\bvec{r}}}^\prime)
+ a_4\cdot Y_4({\hat{\bvec{r}}}^\prime)
\right),
\end{eqnarray}
where, $\hat{\bvec{r}}^\prime =(\theta^\prime,\phi^\prime)$ is the angles in the
intrinsic system
and the relation between $a_{\lambda\mu}$ and $\alpha_{\lambda\mu}$ is given by
\begin{eqnarray}
a_{\lambda\mu} = \sum_{\mu^\prime}D^{\lambda}_{\mu\mu^\prime}(\Omega)
\alpha_{\lambda\mu^\prime}.
\end{eqnarray}
Here, $\Omega=(\phi_i,\theta_i,\chi_i)$ is the Euler angle between $\hat{\bvec{r}}$ and
$\hat{\bvec{r}}^\prime$(see Fig.\ref{fig3.00}).
In the axially symmetric case, the nuclear radius is often represented as
\begin{eqnarray}
R(\theta^\prime,\phi^\prime) = R_{\rm P}\left(1 + \beta_2
Y_{20}(\hat{\bvec{r}}^\prime) +
\beta_4Y_{40}(\hat{\bvec{r}}^\prime)
\right).
\end{eqnarray}
For the quadrupole deformation, as we have introduced in section 2,
$a_{2\mu}$ are parametrized as
\begin{align}
a_{20} &= \beta_2{\rm cos}\gamma_2 \\
a_{21} &= a_{2-1} = 0 \\
a_{22} &= a_{2-2} = \frac{1}{\sqrt{2}}\beta_2{\rm sin}\gamma_2.
\end{align}
We have added the suffix 2 to represent the quadrupole degree of freedom, and
$\gamma_2=0$ and $\gamma_2=\pi/3$ correspond to axially symmetric deformation with
prolate shape and oblate shape, respectively.
Since the oblate shape is also represented by negative $\beta_2$ with $\gamma_2 = 0$,
axially symmetric deformation is described only by $\beta_2$.
Similar parametrization is also possible for $a_{4\mu}$\cite{RS81}.
Due to the reflection symmetry with respect to the ($x-y$), ($y-z$), and ($z-x$)-planes,
only $a_{40}, a_{42}$, and $a_{44}$ are independent variables, and they can be
parametrized as follows
\begin{align}
a_{40} &= \beta_4\left(\sqrt{\frac{7}{12}}{\rm cos}\delta_4
+ \sqrt{\frac{5}{12}}{\rm sin}\delta_4{\rm cos}\gamma_4
\right) \\
\sqrt{2}a_{42} &= -\beta_4{\rm sin}\delta_4{\rm sin}\gamma_4 \\
\sqrt{2}a_{44} &= \beta_4\left(
\sqrt{\frac{5}{12}}{\rm cos}\delta_4 -
\sqrt{\frac{7}{12}}{\rm sin}\delta_4{\rm cos}\gamma_4
\right),
\end{align}
with $\beta_4 \ge 0$, $0 \le \delta_4 \le \pi$, and $0 \le \gamma_4 \le \pi/3$.
The $\beta_4$ represents the magnitude of the hexadecapole deformation, and $\delta_4$
and $\gamma_4$ describe the non-axiality.
Axial symmetry corresponds to $\left(\gamma_4 = 0, \delta_4 = {\rm
cos}^{-1}\sqrt{7/12}\right)$ and $\left(\gamma_4=\pi/3, \delta_4=\pi-{\rm
cos}^{-1}\sqrt{7/12}\right)$, and the latter is the same shape as the case with
negative $\beta_4$ and ($\gamma_4 = 0$, $\delta_4 = {\rm
cos}^{-1}\sqrt{7/12}$).
Thus, by allowing $\beta_4$ to be negative, the axially symmetric shape can be
described solely by $a_{40} = \beta_4$.
The nuclear part of the coupling Hamiltonian for axially symmetric
deformation is then given by
\begin{align}
V_{\rm coup}^{({\rm N})}(\bvec{r},\alpha_{\lambda\mu}) &=
-R_{\rm P}\frac{dV_{\rm N}}{dr}
\sum_{\lambda=2,4}\alpha_{\lambda}\cdot
Y_{\lambda}(\hat{\bvec{r}})
= -R_{\rm P}\frac{dV_{\rm N}}{dr}
\sum_{\lambda=2,4}a_{\lambda}\cdot
Y_{\lambda}(\hat{\bvec{r}}^\prime) \nonumber\\
&= -R_{\rm P}\frac{dV_{\rm N}}{dr}
\sum_{\lambda=2,4}\beta_{\lambda}
Y_{\lambda 0}(\hat{\bvec{r}}^\prime)
\end{align}
in the linear coupling approximation.
While the form factor for the Coulomb part of the coupling Hamiltonian has already been
obtained in the previous subsection up to the first order in $\beta_{\lambda}$, we