-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
273 lines (232 loc) · 10.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import time
import shutil
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
from torch.nn.utils import clip_grad_norm_
from dataset import DataSet
from model import RFL_model
from sample_loss import sampleloss
from transforms import *
from opts import parser
import numpy as np
import torch.optim.lr_scheduler
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
torch.manual_seed(1) # cpu
torch.cuda.manual_seed_all(1) # gpu
np.random.seed(1) # numpy
random.seed(1) # random and transforms
torch.backends.cudnn.deterministic = True # cudnn
best_prec1 = 0
def main():
global args, best_prec1
args = parser.parse_args()
if args.modality == 'RGB':
data_length = 1
elif args.modality == 'Flow':
data_length = 5
if args.dataset == 'ucf101':
num_class = 101
elif args.dataset == 'hmdb51':
num_class = 51
elif args.dataset == 'something':
num_class = 50
else:
raise ValueError('Unknown dataset ' + args.dataset)
print(args)
model = RFL_model(num_class, args.num_segments, args.modality, init_path=args.finetune, dropout=args.dropout)
params = model.get_optim_policies()
if args.resume:
if os.path.isfile(args.resume):
print(("=> loading from checkpoint '{}'".format(args.resume)))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print(("=> loaded checkpoint '{}' (epoch {})"
.format(args.evaluate, checkpoint['epoch'])))
else:
print(("=> no checkpoint found at '{}'".format(args.resume)))
crop_size = model.input_size
scale_size = model.input_size * 256 // 224
input_mean = model.input_mean
input_std = model.input_std
train_augmentation = model.get_augmentation()
model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda()
cudnn.benchmark = True
# Data loading code
normalize = GroupNormalize(input_mean, input_std)
train_loader = torch.utils.data.DataLoader(
DataSet(args.train_list, num_segments=args.num_segments, new_length=data_length, \
modality=args.modality,
image_tmpl="img_{:05d}.jpg" if args.modality == "RGB" else args.flow_prefix + "{}_{:05d}.jpg",
transform=torchvision.transforms.Compose([train_augmentation,
Stack(roll=True), \
ToTorchFormatTensor(div=False), normalize, ])), \
batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
DataSet(args.val_list, num_segments=args.num_segments, new_length=data_length, \
modality=args.modality,
image_tmpl="img_{:05d}.jpg" if args.modality == "RGB" else args.flow_prefix + "{}_{:05d}.jpg",
random_shift=False, transform=torchvision.transforms.Compose([
GroupScale(int(scale_size)), GroupCenterCrop(crop_size), \
Stack(roll=True),
ToTorchFormatTensor(div=False),
normalize, ])), batch_size=args.batch_size, shuffle=False, \
num_workers=args.workers, pin_memory=True)
cls_criterion = torch.nn.CrossEntropyLoss().cuda()
samp_criterion = sampleloss().cuda()
sim_criterion = torch.nn.MSELoss().cuda()
optim = torch.optim.SGD(params, args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optim, epoch, args.lr_steps)
# train for one epoch
train(train_loader, model, cls_criterion, sim_criterion, optim, epoch)
# evaluate on validation set
# eval_freq is the controller of when to save and validate the model
if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1:
loss, prec1 = validate(val_loader, model, cls_criterion)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.module.state_dict(),
'best_prec1': best_prec1,
}, is_best)
print('best_prec1: ', best_prec1)
def train(train_loader, model, cls_criterion, sim_criterion, optim, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
top1 = AverageMeter()
'''calculate similarity losses between part and full features'''
sim_losses = AverageMeter()
'''calculate prediction losses of part and full features'''
cls_losses = AverageMeter()
full_losses = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for m, (full_input, target, _, part_input, part_target, ratio) in enumerate(train_loader):
assert np.array_equal(target.numpy(),
part_target.numpy()), "part video and complete video should have same label"
data_time.update(time.time() - end)
with torch.no_grad():
part_input = part_input.cuda()
part_target = part_target.cuda()
part_input_var = torch.autograd.Variable(part_input)
part_target_var = torch.autograd.Variable(part_target)
part_out, feature_part = model(part_input_var, part=True)
with torch.no_grad():
full_input = full_input.cuda()
full_input_var = torch.autograd.Variable(full_input)
full_out, feature_full = model(full_input_var, part=False)
feature_full = torch.autograd.Variable(feature_full.data, requires_grad=False)
loss_cls = cls_criterion(part_out, part_target_var)
# ratio = ratio.type(torch.cuda.FloatTensor)
# loss_cls = samp_criterion(ratio, part_out, part_target_var)
loss_full = cls_criterion(full_out, part_target_var)
loss_sim = sim_criterion(feature_part, feature_full)
loss = loss_cls + loss_full + loss_sim
optim.zero_grad()
loss.backward()
if args.clip_gradient is not None:
total_norm = clip_grad_norm_(model.parameters(), args.clip_gradient)
if total_norm > args.clip_gradient:
print("clipping gradient: {} with coef {}".format(total_norm, args.clip_gradient / total_norm))
optim.step()
cls_losses.update(loss_cls.item(), full_input.size(0))
sim_losses.update(loss_sim.item(), full_input.size(0))
prec1, _ = accuracy(part_out.data, part_target, topk=(1, 5))
top1.update(prec1.item(), part_input.size(0))
full_losses.update(loss_full.item(), full_input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if m % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}], lr: {lr:.5f} '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'cls_loss {loss.val:.4f} ({loss.avg:.4f}) '
'full_loss {full_loss.val:.4f} ({full_loss.avg:.4f}) '
'sim_loss {sim_loss.val:.4f} ({sim_loss.avg:.4f}) '
'prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, m, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=cls_losses, full_loss=full_losses, sim_loss=sim_losses,
top1=top1, lr=optim.param_groups[-1]['lr']))
def validate(val_loader, model, cls_criterion):
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
for i, (input, target, ratio) in enumerate(val_loader):
input = input.cuda()
target = target.cuda()
with torch.no_grad():
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output, feature = model(input_var, part=True)
loss = cls_criterion(output, target_var)
losses.update(loss.item(), input.size(0))
prec1, _ = accuracy(output.data, target, topk=(1, 5))
# update the sum of validation examples with input.size(0)
top1.update(prec1.item(), input.size(0))
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(i, len(val_loader), loss=losses, top1=top1))
print('loss: ', losses.avg)
print('accuracy: ', top1.avg)
return losses.avg, top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
dirname = os.path.join('models', args.snapshot_pref)
if not os.path.exists(dirname):
os.mkdir(dirname)
filename = '_'.join((args.snapshot_pref, str(state['epoch']), filename))
filename = os.path.join(dirname, filename)
torch.save(state, filename)
if is_best:
best_name = '_'.join(
(args.snapshot_pref, 'model_best_', str(state['epoch']), str(state['best_prec1']) + '.pth.tar'))
best_name = os.path.join('models', args.snapshot_pref, best_name)
shutil.copyfile(filename, best_name)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
'''update all value of the object'''
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch, lr_steps):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
decay = 0.1 ** (sum(epoch >= np.array(lr_steps)))
lr = args.lr * decay
decay = args.weight_decay
for param_group in optimizer.param_groups:
param_group['lr'] = lr * param_group['lr_mult']
param_group['weight_decay'] = decay * param_group['decay_mult']
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()