forked from bwallace/CNN-for-text-classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRoB_CNN_redux.py
105 lines (77 loc) · 2.94 KB
/
RoB_CNN_redux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import csv
import sys
import os
csv.field_size_limit(sys.maxsize)
import sklearn
from sklearn.metrics import accuracy_score
import pandas as pd
import numpy as np
import gensim
from gensim.models import Word2Vec
import CNN_text
def load_trained_w2v_model(path="/Users/byron/dev/Deep-PICO/PubMed-w2v.bin"):
m = Word2Vec.load_word2vec_format(path, binary=True)
return m
def read_RoB_data(path="RoB-data/train-Xy-Random-sequence-generation.txt",
y_tuples=False, zero_one=True):
'''
Assumes data is in CSV with label as second entry.
'''
raw_texts, y = [], []
with open(path) as input_file:
rows = csv.reader(input_file)
for row in rows:
doc_text, lbl = row
raw_texts.append(doc_text)
cur_y = int(lbl)
if y_tuples:
if cur_y > 0:
y.append(np.array([0,1]))
else:
y.append(np.array([1,0]))
else:
if cur_y < 1:
if zero_one:
y.append(0)
else:
y.append(-1)
else:
y.append(1)
return raw_texts, y
def RoB_CNN(total_epochs=60, weights_file=None):
train_docs, y_train = read_RoB_data(path="RoB-data/train-Xy-Random-sequence-generation.txt",
y_tuples=False)
test_docs, y_test = read_RoB_data(path="RoB-data/test-Xy-Random-sequence-generation.txt",
y_tuples=False)
train_docs = train_docs#[:500]
y_train = y_train#[:500]
wvs = load_trained_w2v_model()
# preprocessor for texts
# then the CNN
p = CNN_text.Preprocessor(max_features=10000, maxlen=5000, wvs=wvs)
all_docs = train_docs + test_docs
print("preprocessing...")
p.preprocess(all_docs)
train_X = p.build_sequences(train_docs)
test_X = p.build_sequences(test_docs)
cnn = CNN_text.TextCNN(p, filters=[2,3,5], n_filters=100, dropout=0.0)
# write the model out
json_string = cnn.model.to_json()
open('RoB_model_architecture.json', 'w').write(json_string)
print("dumped model!")
if weights_file:
cnn.model.load_weights('weights.hdf5')
epochs_per_iter = 10
epochs_so_far = 0
while epochs_so_far < total_epochs:
cnn.train(train_X, y_train, nb_epochs=epochs_per_iter)#, X_val=test_X, y_val=y_test)
epochs_so_far += epochs_per_iter
yhat = cnn.predict(test_X, binarize=True)
#import pdb; pdb.set_trace()
print("acc @ epoch %s: %s" % (epochs_so_far, accuracy_score(y_test, yhat)))
#cnn.initialize_sequences_and_vocab(all_docs)
#cnn.train(X_train, y_train, X_val=None, y_val=None
# note that on TACC you need:
# export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/apps/intel14/hdf5/1.8.12/x86_64/lib/
if __name__ == '__main__':
RoB_CNN()