-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
183 lines (138 loc) · 6.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import argparse
import time
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
from torch.utils.data import DataLoader
from models.res_unet import ResUNet
from dataloader import *
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device, '-'*20)
def main(args):
if args.task == 'train':
if not args.train_image_path:
raise 'train data path should be specified !'
train_dataset = RoomDataset(file_path=args.train_image_path,
augment=args.augment)
train_dataloader = DataLoader(batch_size=args.batch_size, shuffle=True,
dataset=train_dataset, num_workers=args.workers)
if args.val_image_path:
val_dataset = RoomDataset(file_path=args.val_image_path)
val_dataloader = DataLoader(batch_size=args.batch_size,
dataset=val_dataset, num_workers=args.workers)
# if resume TODO
model = ResUNet(3, 12).to(device)
train(args, model, train_dataloader, val_dataloader)
else: # test
if not args.test_image_path:
raise 'test data path should be specified !'
test_dataset = RoomDataset(file_path=args.test_image_path)
test_dataloader = DataLoader(batch_size=1, dataset=test_dataset, num_workers=args.workers)
model = ResUNet(3, 12).to(device)
model.load_state_dict(torch.load(args.checkpoint + '/checkpoint_100.pth'))
test(model, test_dataloader)
def train(args, model, train_dataloader, val_dataloader):
optimizer = torch.optim.Adam(params=model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
# epoch-wise losses
train_losses = []
eval_losses = []
#curr_lr = learning_rate
for epoch in range(args.epochs):
batch_train_losses = []
for i, (images, labels) in enumerate(train_dataloader):
model.train()
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
# loss
train_loss = criterion(outputs, labels)
batch_train_losses.append(train_loss)
# backward
model.zero_grad()
train_loss.backward()
optimizer.step()
# evaluation per epoch
eval_loss = evaluate(model, criterion, val_dataloader)
eval_losses.append(eval_loss)
train_losses.append(np.mean(batch_train_losses))
# save model
if (epoch + 1) % 100 == 0:
torch.save(model.state_dict(), args.checkpoint + '/checkpoint_%d.pth' % (epoch + 1))
torch.save(optimizer.state_dict(), args.checkpoint + '/optim_%d.pth' % (epoch + 1))
# update learning rate
if (epoch + 1) % 20 == 0:
curr_lr /= 3
#update_lr(optimizer, curr_lr)
def update_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def evaluate(model, criterion, val_dataloader):
model.eval()
losses = []
with torch.no_grad():
for images, labels in val_dataloader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
losses.append(loss)
return np.mean(losses)
def test(model, test_dataloader):
model.eval()
with torch.no_grad():
for images, labels in test_dataloader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
np.save('xxx.npy', outputs)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch UNet Training')
# Task setting
parser.add_argument('--task', default='train', type=str,
choices=['train', 'test'], help='task')
# Dataset setting
parser.add_argument('--train-image-path', default='', type=str,
help='path to training images')
parser.add_argument('--val-image-path', default='', type=str,
help='path to validation images')
parser.add_argument('--test-image-path', default='', type=str,
help='path to test images')
# Training strategy
parser.add_argument('--solver', metavar='SOLVER', default='rms',
choices=['rms', 'adam'],
help='optimizers')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 16)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch-size', default=8, type=int, metavar='N',
help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=2.5e-4, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=0, type=float,
metavar='W', help='weight decay (default: 0)')
parser.add_argument('--schedule', type=int, nargs='+', default=[60, 90],
help='Decrease learning rate at these epochs.')
parser.add_argument('--gamma', type=float, default=0.1,
help='LR is multiplied by gamma on schedule.')
parser.add_argument('--target-weight', dest='target_weight',
action='store_true',
help='Loss with target_weight')
# Data processing
parser.add_argument('--augment', dest='augment', action='store_true',
help='augment data for training')
# Miscs
parser.add_argument('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('-d', '--debug', dest='debug', action='store_true',
help='show intermediate results')
main(parser.parse_args())