-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_classification.py
261 lines (205 loc) · 9.93 KB
/
train_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import argparse
import torch
import shutil
import torch.optim as optim
import torch.nn as nn
import numpy as np
import pandas as pd
from torchvision.utils import make_grid, save_image
from torch.utils.data import DataLoader
from models import *
from dataloader_classifier import *
from loss import *
from tqdm import tqdm
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def main(args):
if args.task == 'train':
if not args.train_image_path:
raise 'train data path should be specified !'
train_dataset = RoomDataset(file_path=args.train_image_path,
augment=args.augment)
if args.val_image_path:
val_dataset = RoomDataset(file_path=args.val_image_path)
model = hg(num_stacks=4, num_blocks=4, num_classes=12).to(device)
optimizer = torch.optim.Adam(params=model.parameters(), lr=0.0003)
if args.resume:
if not os.path.isfile(args.resume):
raise '=> no checkpoint found at %s' % args.resume
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
args.best_loss = checkpoint['best_loss']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print('=> loaded checkpoint %s (epoch %d)' % (args.resume, args.start_epoch))
train(args, model, optimizer, train_dataset, val_dataset)
else: # test
if not args.test_image_path:
raise '=> test data path should be specified'
if not args.resume or not os.path.isfile(args.resume):
raise '=> resume not specified or no checkpoint found'
test_dataset = RoomDataset(file_path=args.test_image_path, train=False)
model = hg(num_stacks=4, num_blocks=4, num_classes=12).to(device)
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
test(args, model, test_dataset)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
def train(args, model, optimizer, train_dataset, val_dataset):
criterion = nn.CrossEntropyLoss()
# epoch-wise losses
train_losses = []
eval_losses = []
#curr_lr = learning_rate
dataloader = DataLoader(batch_size=args.batch_size, shuffle=True,
dataset=train_dataset, num_workers=args.workers)
df_loss = pd.DataFrame()
best_loss = args.best_loss
for epoch in range(args.epochs):
print('training epoch %d/%s' % (args.start_epoch+epoch+1, args.start_epoch+args.epochs))
batch_train_losses = []
data_iterator = tqdm(dataloader, total=len(train_dataset) // args.batch_size + 1)
for i, (images, labels) in enumerate(data_iterator):
model.train()
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
# loss
train_loss = 0
if type(outputs) == list:
# intermediate supervision
for o in outputs:
train_loss += criterion(o, labels)
#train_loss += depth_loss(labels, o) + gradient_loss(labels, o)
outputs = outputs[-1]
else:
train_loss = criterion(outputs, labels)
#train_loss = depth_loss(labels, outputs) + gradient_loss(labels, outputs)
# loss
#train_loss = criterion(outputs, labels)
batch_train_losses.append(train_loss.item())
# backward
model.zero_grad()
train_loss.backward()
optimizer.step()
# evaluation per epoch
epo_train_loss = np.mean(batch_train_losses)
print('mean train loss: %.4f' % epo_train_loss)
train_losses.append(epo_train_loss)
epo_eval_loss = evaluate(args, model, criterion, val_dataset, args.start_epoch+epoch+1)
print('mean val loss: %.4f' % epo_eval_loss)
eval_losses.append(epo_eval_loss)
# update output loss file after per epoch
df_loss.assign(train=train_losses, val=eval_losses).to_csv('./loss_regression.csv')
# save model
is_best = False
if epo_eval_loss < best_loss:
best_loss = epo_eval_loss
is_best = True
save_checkpoint({
'epoch': args.start_epoch+epoch+1,
'best_loss': best_loss,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, is_best)
# update learning rate
#if (epoch + 1) % 20 == 0:
#curr_lr /= 3
#update_lr(optimizer, curr_lr)
def update_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def evaluate(args, model, criterion, val_dataset, epo_no):
losses = []
dataloader = DataLoader(batch_size=args.batch_size,
dataset=val_dataset, num_workers=args.workers)
model.eval()
with torch.no_grad():
print('evaluating...')
data_iterator = tqdm(dataloader, total=len(val_dataset) // args.batch_size + 1)
for images, labels in data_iterator:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
# loss
loss = 0
if type(outputs) == list:
for o in outputs:
loss += criterion(o, labels)
#loss += depth_loss(labels, o) + gradient_loss(labels, o)
outputs = outputs[-1]
else:
loss = criterion(outputs, labels)
#loss = depth_loss(labels, outputs) + gradient_loss(labels, outputs)
losses.append(loss.item())
mean_val_loss = np.mean(losses)
if epo_no % 10 == 0:
np.save('./val_images_%d.npy' % epo_no, images.cpu().numpy().astype(np.uint8))
np.save('./val_labels_%d.npy' % epo_no, labels.cpu().numpy())
np.save('./val_preds_%d.npy' % epo_no, outputs.cpu().numpy())
return mean_val_loss
def test(args, model, test_dataset):
dataloader = DataLoader(batch_size=1, dataset=test_dataset, num_workers=args.workers)
model.eval()
with torch.no_grad():
data_iterator = tqdm(dataloader, total=len(test_dataset) // args.batch_size + 1)
for images, img_name in data_iterator:
print(img_name); exit(1)
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
np.save('xxx.npy', outputs)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch SHNet Training')
# Task setting
parser.add_argument('--task', default='train', type=str,
choices=['train', 'test'], help='task')
# Dataset setting
parser.add_argument('--train-image-path', default='', type=str,
help='path to training images')
parser.add_argument('--val-image-path', default='', type=str,
help='path to validation images')
parser.add_argument('--test-image-path', default='', type=str,
help='path to test images')
# Training strategy
parser.add_argument('--solver', metavar='SOLVER', default='rms',
choices=['rms', 'adam'],
help='optimizers')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 16)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch-size', default=8, type=int, metavar='N',
help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=2.5e-4, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=0, type=float,
metavar='W', help='weight decay (default: 0)')
parser.add_argument('--schedule', type=int, nargs='+', default=[60, 90],
help='Decrease learning rate at these epochs.')
parser.add_argument('--gamma', type=float, default=0.1,
help='LR is multiplied by gamma on schedule.')
parser.add_argument('--target-weight', dest='target_weight',
action='store_true',
help='Loss with target_weight')
# Data processing
parser.add_argument('--augment', dest='augment', action='store_true',
help='augment data for training')
# Miscs
parser.add_argument('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('-d', '--debug', dest='debug', action='store_true',
help='show intermediate results')
parser.add_argument('--best-loss', type=float, default=np.float('inf'),
help='best (minimum) loss of current model.')
parser.add_argument('--start-epoch', type=int, default=0,
help='trained epoch of current model.')
main(parser.parse_args())