forked from mesutpiskin/id-card-detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathid_card_detector.py
152 lines (111 loc) · 5.18 KB
/
id_card_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Import packages
import os
import cv2
import numpy as np
import tensorflow as tf
import sys
from PIL import Image
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
# Import utilites
from utils import label_map_util, image_reader_util
from utils import visualization_utils as vis_util
# Name of the directory containing the object detection module we're using
MODEL_NAME = 'model'
# Grab path to current working directory
#CWD_PATH = os.getcwd()
CWD_PATH = os.path.dirname(os.path.abspath(__file__))
# Path to frozen detection graph .pb file, which contains the model that is used
# for object detection.
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,'data','labelmap.pbtxt')
# Number of classes the object detector can identify
NUM_CLASSES = 1
# Load the label map.
# Label maps map indices to category names, so that when our convolution
# network predicts `5`, we know that this corresponds to `king`.
# Here we use internal utility functions, but anything that returns a
# dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
def DetectIdentityCard(image_b64:str):
"""
"""
if image_b64!=None and len(image_b64)>0:
# Define input and output tensors (i.e. data) for the object detection classifier
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Load image using OpenCV and
# expand image dimensions to have shape: [1, None, None, 3]
# i.e. a single-column array, where each item in the column has the pixel RGB value
# get the image in open cv format
image = image_reader_util.base64_to_cv2_img(image_b64)
image_expanded = np.expand_dims(image, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded})
# Draw the results of the detection (aka 'visulaize the results')
'''
image, array_coord = vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=3,
min_score_thresh=0.60)
'''
shape = np.shape(image)
im_width, im_height = shape[1], shape[0]
boxes1, scores1 = np.squeeze(boxes), np.squeeze(scores)
result_boxes = [tuple([tuple(boxes1[i].tolist()), scores1[i]]) for i in range(boxes1.shape[0]) if scores1[i]>0.60]
result_boxes1 = []
for box, score in result_boxes:
ymin, xmin, ymax, xmax = box
ymin, xmin, ymax, xmax = int(ymin* im_height), int(xmin * im_width), int(ymax* im_height), int(xmax * im_width)
result_boxes1.append(tuple([tuple([xmin, ymin, xmax-xmin, ymax-ymin]), score]))
return result_boxes1
return None
def DetectIdentityCardsCount(imageB64:str)->int:
if imageB64==None or imageB64=="":
return 0
boxes = DetectIdentityCard(imageB64)
return 0 if boxes==None else len(boxes)
#test
if __name__=="__main__":
import base64
testImg = './static/cell-phones.png'
with open(testImg, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read())
boxes = DetectIdentityCard(encoded_string)
image = cv2.imread(testImg)
for box,score in boxes:
x,y,w,h = box
image = cv2.rectangle(image, (x,y), (x+w, y+h), (255, 0, 0), 5)
cv2.imshow("Result", image)
# Press any key to close the image
cv2.waitKey(0)
# Clean up
cv2.destroyAllWindows()