-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlisp.py
185 lines (144 loc) · 5.45 KB
/
lisp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import re
Atom, Expression = str, list
def tokenize(source):
"""Tokenize any lisp-like source string. """
tokens = re.findall(r"[()']|[^()'\s]+", source)
return tokens
def parse_expr(tokens):
"""Parse a single expression. Return it and remaining tokens."""
if tokens[0] == "'":
expr, tokens = parse_expr(tokens[1:])
return ['quote', expr], tokens
if tokens[0] == '(':
expr, tokens = parse_body(tokens[1:])
assert tokens and tokens[0] == ')', 'Bad trailing tokens: %r' % tokens
return expr, tokens[1:]
return tokens[0], tokens[1:] # Atom
def parse_body(tokens):
"""Parse a list of expressions. Return them and remaining tokens."""
if tokens and tokens[0] != ')':
first_expr, tokens = parse_expr(tokens)
rest_list, tokens = parse_body(tokens)
return [first_expr] + rest_list, tokens
return [], tokens
def parse(source):
"""Return a list of parsed expressions."""
tokens = tokenize(source)
expr_list, remaining_tokens = parse_body(tokens)
assert not remaining_tokens, 'Bad trailing tokens: %r' % remaining_tokens
return expr_list
def is_atom_or_nil(data):
return isinstance(data, Atom) or data == []
def is_pair(data):
return isinstance(data, Expression) and len(data) == 2
class Lisp:
"""The LISP interpreter bound with environment you pass.
>>> env = {
... 'hey': 'Hello',
... 'universe': ['world!'],
... }
>>> Lisp(env).eval("(cons hey universe)")
['Hello', 'world!']
"""
BUILTIN_FUNCTIONS = 'quote atom eq car cdr cons cond label defun add sub lt'.split()
def __init__(self, env=None):
self.env = env or {}
def eval(self, source):
"""Evaluate LISP-code (a sequence of expressions) in shared environment."""
result = Expression()
expressions = parse(source)
for expr in expressions:
result = self.eval_expr(expr)
return result
def eval_expr(self, expr):
"""Evaluate a single expression."""
assert isinstance(expr, (Atom, Expression))
if isinstance(expr, Atom):
if expr.isdigit():
return expr
return self.env[expr]
else:
func, *args = expr
return self.eval_func(func, *args)
def eval_func(self, func, *args):
"""Evaluate a function of any kind.
It could be:
- a builtin function,
- a function defined by user via defun or label,
- inline lambda expression call.
"""
if isinstance(func, Atom):
if func in self.BUILTIN_FUNCTIONS:
builtin_func = getattr(self, func)
return builtin_func(*args)
else:
# Convert user-defined function to inline lambda call
user_func = self.env[func]
return self.eval_func(user_func, *args)
else:
assert func[0] == 'lambda', 'Bad callable expression: %r' % func
_, arg_names, lambda_body = func
assert isinstance(arg_names, Expression)
assert len(arg_names) == len(args)
func_env = {
arg_name: self.child_eval(arg)
for arg_name, arg in zip(arg_names, args)
}
return self.child_eval(lambda_body, extra_env=func_env)
def child_eval(self, expr, extra_env=None):
"""Evaluate a single expression in isolated environment and return the result."""
child_env = self.env.copy()
if extra_env:
child_env.update(extra_env)
return Lisp(child_env).eval_expr(expr)
# Builtin LISP functions:
def quote(self, arg):
return arg
def atom(self, arg):
value = self.child_eval(arg)
return 't' if is_atom_or_nil(value) else []
def eq(self, arg1, arg2):
val1 = self.child_eval(arg1)
val2 = self.child_eval(arg2)
return 't' if (is_atom_or_nil(val1) and val1 == val2) else []
def car(self, arg):
val = self.child_eval(arg)
assert isinstance(val, Expression)
return val[0] if val else []
def cdr(self, arg):
val = self.child_eval(arg)
assert isinstance(val, Expression)
return val[1:] if val else []
def cons(self, arg1, arg2):
val1 = self.child_eval(arg1)
val2 = self.child_eval(arg2)
assert isinstance(val2, Expression)
return [val1, *val2]
def cond(self, *pairs):
assert all(is_pair(pair) for pair in pairs)
for arg1, arg2 in pairs:
val1 = self.child_eval(arg1)
if val1 == 't':
return self.child_eval(arg2)
return []
def label(self, label_name, label_val):
assert isinstance(label_name, Atom)
self.env[label_name] = label_val
return []
def defun(self, label_name, lambda_args, lambda_body):
new_code = ['label', label_name, ['lambda', lambda_args, lambda_body]]
return self.eval_expr(new_code)
# Trivial arithmetic functions:
def add(self, *args):
vals = [int(self.child_eval(arg)) for arg in args]
return Atom(sum(vals))
def sub(self, arg1, arg2):
val1 = self.child_eval(arg1)
val2 = self.child_eval(arg2)
return Atom(int(val1) - int(val2))
def lt(self, arg1, arg2):
val1 = self.child_eval(arg1)
val2 = self.child_eval(arg2)
if int(val1) < int(val2):
return 't'
return []