-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSNSampler.py
126 lines (105 loc) · 4.9 KB
/
SNSampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#####################################################################
#
# SNSampler:
# Class to return a set of points that sample the
# unit sphere in N dimensions (S^N-1) nearly uniformly.
# Reference:
# A. Yershova and S. M. LaValle.
# Deterministic sampling methods for spheres and SO(3).
# In Proceedings IEEE International Conference
# on Robotics and Automation, 2004.
#
# Siddharth Maddali
# Argonne National Laboratory
# smaddali@alumni.cmu.edu
# February 2020
#
#####################################################################
import numpy as np
from scipy.spatial.transform import Rotation
import snsampler.AuxArrayOps as aux # enables some useful array operations
class SNSampler:
def __init__( self, n_dims=3, n_samples=5 ):
grids = np.meshgrid(
*[ np.linspace( -1., 1., n_samples ) for n in list( range( n_dims-1 ) ) ]
) # this returns a tuple of grids (eg. for n_dims=3, this returns x, y, z grid arrays)
ptsNm1d = np.concatenate(
tuple( [ this.reshape( 1, -1 ) for this in grids ] ),
axis=0
) # gives low-dimensional representation of points along only one pair of opposing faces of the high-dimensional cube
ptsNd = np.concatenate(
tuple(
[
np.concatenate(
( ptsNm1d, scl*np.ones( ( 1, ptsNm1d.shape[-1] ) ) ),
axis=0
) for scl in [ -1., 1. ]
]
),
axis=1
) # embeds the above lower-dimensional points onto the actual opposite faces of the high-dimensional cube
pts = np.unique(
np.concatenate(
tuple( [ np.roll( ptsNd, n, axis=0 ) for n in list( range( n_dims ) ) ] ),
axis=1
),
axis=1
) # augments the above array to obtain the sample points along the other faces of the cube
normlizr = np.sqrt( ( pts**2 ).sum( axis=0 ) ).reshape( 1, -1 ).repeat( n_dims, axis=0 )
self.sample_points = pts / normlizr
# normalizes each column of the above array to get unit-norm vectors
return
def removeRedundantRotations( self ):
"""
Because unit quaternions q and -q denote the same physical rotation,
this method only keeps the 'canonical' ones and removes the redundant
ones computed in the constructor __init__.
NOTE: only makes sense to do this if n_dims = 4.
"""
self.sample_points = self.sample_points[ :, np.where( self.sample_points[0,:] > 0. )[0] ]
return
def getRMatsFromQuats( self ):
"""
getRMatsFromQuats():
Computes the rotation matrices corresponding to the set of unit quaternions.
Uses Built-in methods of the Rotation class for rapid conversion.
Input:
None
Output:
A 3x3xN array with each 3x3 slice denoting the orthogonal rotation matrix computed from
the unit quaternion that is the corresponding column of self.sample_points.
"""
R = Rotation.from_quat( self.sample_points.T )
self.RMat = np.rollaxis( R.as_matrix(), 0, 3 )
self.RMatInverse = np.rollaxis( R.inv().as_matrix(), 0, 3 )
return
def getTransformationSequence( self, start=0, stride=1 ):
"""
getTansformationSequence():
Computes the **differential** rotational operators (in matrix form) that
transform each rotation self.RMat[:,:,start+n*stride] into self.RMat[:,:,start+(n+1)*stride]. In other
words, computes the 3x3xN array of matrices ARR such that:
ARR[:,:,start+n*stride] @ self.RMat[:,:,start+n*stride] = self.RMat[:,:,start+(n+1)*stride].
Here N is equal to len( list( range( start, self.RMat.shape[-1], stride ) ).
This is something like the 'diff' function in Matlab, but for rotations.
It can be used to transform extremely large geometric datasets in a
sequential manner, without having to undo the previous transformation.
Input:
None
Output:
A 3x3xN array (same size as self.RMat).
The first elements of ARR and self.RMat are the same (i.e., the difference
is assumed starting from the identity rotation).
"""
try:
these = list( range( start, self.RMat.shape[-1], stride ) )
myarr = np.zeros( ( 3, 3, len( these ) ) )
myarr[:,:,0] = self.RMat[:,:,these[0]]
myarr[:,:,1:] = aux.multimatmul(
self.RMat[:,:,these[1:]],
self.RMatInverse[:,:,these[:-1]]
)
return myarr, these
except AttributeError: # i.e., if self.RMat and/or self.RMatInverse not found ...
print( 'ERROR: Try running getRMatsFromQuats() first. ' )
return