-
Notifications
You must be signed in to change notification settings - Fork 6
/
vgmpacker.py
820 lines (628 loc) · 25.4 KB
/
vgmpacker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
#!/usr/bin/env python
# vgmpacker.py
# Compression tool for optimal packing of SN76489-based PSG VGM data for use on 8-bit CPUs
# By Simon Morris (https://github.com/simondotm/)
# See https://github.com/simondotm/vgm-packer
#
# Copyright (c) 2019 Simon Morris. All rights reserved.
#
# "MIT License":
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the Software
# is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
# PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# Packing SN76489 VGM data into the most efficient storage format requires:
# 1. Interleaved data unpacked into serialized data per register
# 2. Tone registers 0/1/2 packed as three separate 16-bit data series
# 3. Tone register 3 and volumes 0,1,2,3 packed as five separate 4-bit data series
# This can achieve over 50% size reduction over the interleaved format
# However, it requires 8 separately compressed data blocks, and also, a compression scheme that supports streamed decoding
# Since most traditional compression schemes are 'in-place' decoders that back reference the previously unpacked data,
# in order to support streamed decoding on 8-bit systems, our compression scheme has to use local decompression buffers.
# This packer deploys a number of techniques that provide the best compression for lowest ram overhead.
#
# It utilises LZ4 and Huffman encoders from https://github.com/simondotm/lz4enc-python
import functools
import itertools
import struct
import sys
import time
import binascii
import math
import operator
import os
from modules.lz4enc import LZ4
from modules.huffman import Huffman
from modules.vgmparser import VgmStream
class VgmPacker:
# pack options
HIGH_COMPRESSION = False # enable 2kb sliding window with 16-bits instead of 255 byte, overridden by LZ48
LZ48 = True # enable 8 bit LZ4 mode
OUTPUT_RAWDATA = False # output raw dumps of the data that was compressed by LZ4/Huffman
RLE = True # always set now.
ENABLE_HUFFMAN = True # optional
VERBOSE = True
def __init__(self):
print("init")
#----------------------------------------------------------
# Utilities
#----------------------------------------------------------
# split the packed raw data into 11 separate streams
# returns array of 11 bytearrays
def split_raw(self, rawData, stripCommands = True):
registers = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
registers_opt = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
latched_channel = -1
output_block = bytearray()
output_blocks = []
for o in range(11):
output_blocks.append( bytearray() )
if stripCommands:
register_mask = 15
else:
register_mask = 255
# unpack the raw binary data in 11 arrays of register data without any deltas between them
# eg. the raw chip writes to all 11 registers every frame
n = 0
Packet = True
verbose = False
while (Packet):
packet_size = rawData[n]
if verbose:
print("packet_size=" + str(packet_size))
n += 1
if packet_size == 255:
Packet = False
else:
for x in range(packet_size):
d = rawData[n+x]
#if verbose:
# print " frame byte number=" +str(x)
# print " frame byte=" +str(d)
if d & 128:
# latch
c = (d>>5)&3
latched_channel = c
if d & 16:
# volume
if verbose:
print(" volume on channel " + str(c))
registers[c+7] = d & register_mask
else:
# tone
if verbose:
print(" tone on channel " + str(c))
registers[c*2+0] = d & register_mask
else:
if verbose:
print(" tone data on latched channel " + str(latched_channel))
registers[latched_channel*2+1] = d # we no longer do any masking here # d & 63 # tone data only contains 6 bits of info anyway, so no need for mask
if latched_channel == 3:
print("ERROR CHANNEL")
# emit current state of each of the 11 registers to 11 different bytearrays
for x in range(11):
output_blocks[x].append( registers[x] )
# next packet
n += packet_size
#print(output_blocks[6])
#IGNORE we no longer do this - let the decoder do it instead.
if False:
# make sure we only emit tone3 when it changes, or 15 for no-change
# this prevents the LFSR from being reset
lastTone3 = 255
for x in range(len(output_blocks[6])):
t = output_blocks[6][x]
if t == lastTone3:
output_blocks[6][x] = 15
lastTone3 = t
# print(output_blocks[6])
# Add EOF marker (0x08) to tone3 byte stream
output_blocks[6].append(0x08) # 0x08 is an invalid noise tone.
# return the split blocks
return output_blocks
# return string with byte overhead of n blocks on decoder side
def overhead(self, n):
return " (" + str(n*lz4.getWindowSize()) + " bytes overhead)"
# report stats from block_in and block_out compression ration, block_count indicates overhead, and msg is the description
def report(self, lz4, block_in, block_out, block_count, msg=""):
src_size = len(block_in)
dst_size = len(block_out)
if src_size == 0:
ratio = 0
else:
ratio = 100 - (int)((dst_size*100 / src_size))
ws = lz4.getWindowSize()
if ws < 1024:
window_size = str(ws) + "b"
else:
window_size = str(ws>>10) + "Kb"
# outputs with multiple blocks will have overhead on decoder side
overhead = block_count * lz4.getWindowSize()
total_size = dst_size + overhead
msg = "{:87}".format(msg)
print(" Compressed '" + msg + "', " + str(src_size) + " into " + str(dst_size) + " bytes => " + str(ratio) + "%, level=" + str(lz4.getCompressionLevel()) + ", window=" + window_size + ", overhead=" + str(overhead) + ", size=" + str(total_size) + ", tokens=" + str(lz4.stats["tokenCount"]))
# from the 11 registers array, return a new byte array which is all 11 registers sets combined into one buffer
def combine_parts(self, registers):
buffer = bytearray()
for x in range(len(registers)):
buffer += registers[x]
return buffer
# from the 11 registers array, return a new bytearray of the registers combined from the given array
# where combination is an array, eg. [0,3,1]
def combine_registers(self, registers, combination):
buffer = bytearray()
for x in range(len(registers[0])):
for y in range(len(combination)):
r = combination[y]
buffer.append( registers[r][x] )
return buffer
# given a block of bytes of 4-bit values, compress two bytes to 1
def pack4(self, block):
packed_block = bytearray()
for x in range(0, len(block), 2):
a = block[x+0] & 15
if x+1 >= len(block):
b = 0
else:
b = block[x+1] & 15
c = (a << 4) + b
packed_block.append(c)
return packed_block
# given a block of bytes, return a new version with 'marker' replacing bytes that are unchanged
# assumed 8-bit data series on input. used for tone3 differentials to prevent LFSR reset.
def diff(self, block, marker = 255):
input_block = block
diff_block = bytearray()
for n in range(len(input_block)):
if n == 0:
diff_block.append(input_block[0])
else:
if input_block[n] == input_block[n-1]:
diff_block.append(marker)
else:
diff_block.append(input_block[n])
# test unpack/undiff
assert len(diff_block) == len(input_block)
rebuilt_block = bytearray()
for n in range(len(diff_block)):
d = diff_block[n]
if d == marker:
assert n != 0
rebuilt_block.append( rebuilt_block[n-1] )
else:
rebuilt_block.append( diff_block[n] )
assert rebuilt_block == input_block
return diff_block
# given a block of bytes, return a new version with deltas applied to each byte
def delta(self, block):
input_block = block
diff_block = bytearray()
for n in range(1, len(input_block)):
a = input_block[n-1]
b = input_block[n]
diff_block.append( (b-a) & 255 )
return diff_block
# apply simple RLE encoding to a block of 4-bit tone or volume data
# run length encoded into top 4-bits. 0=no repeat, 15=15 repeats.
def rle(self, block):
#return block
if not self.RLE:
return block
rle_block = bytearray()
n = 0
while (n < len(block)):
#print('offset ' + str(n))
offset = n
count = 0
while ((offset < len(block)-1) and (count < 15)):
#print('diff[' + str(offset+1) + ']='+str(block[offset+1]))
if block[offset+1] == block[n]:
count += 1
offset += 1
else:
#print('ack')
break
out = ((count&15)<<4) | (block[n] & 15)
rle_block.append( out )
n += count + 1
#if count > 0:
# print('run length ' + str(count) + " of " + format(out, 'x'))
# test unpack
test = bytearray()
for n in rle_block:
count = n>>4
token = n & 15
#print("byte=" + format(n, "x") + ", count=" + str(count) + ", token=" + str(token))
for l in range(count+1):
test.append(token)
if len(test) != len(block):
print("ERROR: output size fault after RLE, testblocksize=" + str(len(test)) + ", inblocksize=" + str(len(block)))
for j in range(len(block)):
if test[j] != block[j]:
print("ERROR: difference at offset=" + str(j) + " expected=" + format(block[j],'x') + ", got " + format(test[j],'x'))
assert test == block
print(' RLE Pack size in=' + str(len(block)) + ', out=' + str(len(rle_block)) + ", saving=" + str(len(block)-len(rle_block)) )
return rle_block
# apply simple RLE encoding to a block of 12-bit tone data (stored as 16-bit words)
# run length encoded into top 4-bits. 0=no repeat, 15=15 repeats.
def rle2(self, block):
if not self.RLE:
return block
rle_block = bytearray()
n = 0
while (n < len(block)):
#print('input offset=' + str(n/2) + ", rle_block offset=" + str(len(rle_block)))
offset = n
count = 0
while ((offset < len(block)-2) and (count < 15)):
if block[offset+2] == block[n] and block[offset+3] == block[n+1]:
count += 1
offset += 2
else:
break
# first byte is command, second byte is data
out = (block[n]<<8) + block[n+1]
#print("value=" + str(out) + ", run length=" + str(count))
#test = (block[n+0]<<4) + block[n+1] # top 6 bits plus bottom 4 bits = 10 bits
if (block[n+1] > 63) or (block[n+0] > 15):
print("Error at offset " + str(offset) + ", tone value is greater than 10 bits in size")
if (out > 4095):
print("Error at offset " + str(offset) + ", tone " + str(out) + " greater than 12 bits in size")
out |= ((count&15)<<12)
rle_block.append( (out>>8) & 255 )
rle_block.append( out & 255 )
n += count*2 + 2
#if count > 0:
# print('run length ' + str(count) + " of " + format(out, 'x'))
# test unpack
test = bytearray()
for i in range(0, len(rle_block), 2):
n = rle_block[i]
count = n>>4
token = n & 15
#print("byte=" + format(n, "x") + ", count=" + str(count) + ", token=" + str(token))
for l in range(count+1):
test.append(token)
test.append(rle_block[i+1])
if len(test) != len(block):
print("ERROR: output size fault after RLE, testblocksize=" + str(len(test)) + ", inblocksize=" + str(len(block)))
for j in range(len(block)):
if test[j] != block[j]:
print("ERROR: difference at offset=" + str(j) + " expected=" + format(block[j],'x') + ", got " + format(test[j],'x'))
assert test == block
print(' RLE Pack in=' + str(len(block)) + ', out=' + str(len(rle_block)) + ", saving=" + str(len(block)-len(rle_block)) )
return rle_block
def frequencies(self, showData):
tokens = lz4.stats["tokens"]
offsets = lz4.stats["offsets"]
lengths = lz4.stats["lengths"]
token_dict = {}
offsets_dict = {}
lengths_dict = {}
for t in tokens:
if t in token_dict:
token_dict[t] += 1
else:
token_dict[t] = 1
for o in offsets:
if o in offsets_dict:
offsets_dict[o] += 1
else:
offsets_dict[o] = 1
for l in lengths:
if l in lengths_dict:
lengths_dict[l] += 1
else:
lengths_dict[l] = 1
print(" tokenCount=" + str(lz4.stats["tokenCount"]))
print(" largestOffset=" + str(lz4.stats["largestOffset"]))
print(" largestLength=" + str(lz4.stats["largestLength"]))
print(" There are " + str(len(token_dict)) + " unique tokens.")
if showData:
sorted_dict = sorted(token_dict.items(), key=operator.itemgetter(1))
print(sorted_dict)
print(" There are " + str(len(offsets_dict)) + " unique offsets.")
if showData:
sorted_dict = sorted(offsets_dict.items(), key=operator.itemgetter(1))
print(sorted_dict)
print(" There are " + str(len(lengths_dict)) + " unique match lengths.")
if showData:
sorted_dict = sorted(lengths_dict.items(), key=operator.itemgetter(1))
print(sorted_dict)
# given an array of data points, serialize it to a bytearray
# size is the number of bytes to be used to represent each element in the source array.
def toByteArray(self, array, size = 1):
r = bytearray()
for v in array:
if size < 2:
r.append(v & 255)
else:
r.append(v & 255)
r.append(v >> 8)
return r
def testUnpackLZ4(self, compressed, uncompressed):
unpacked = bytearray()
eof = False
debug = False
self.index = 4 # skip the block header
def getByte():
byte = compressed[self.index]
self.index += 1
return byte
while not eof:
if debug:
print("")
print("new token, unpacked offset=" + str(len(unpacked)))
token = getByte()
literal_count = token >> 4
literal_length = literal_count
if debug:
print("literal_count=" + str(literal_count) + ", literal_length=" + str(literal_length))
if (literal_count == 15):
while True:
literal_count = getByte()
literal_length += literal_count
if debug:
print("literal_count=" + str(literal_count) + ", literal_length=" + str(literal_length))
if (literal_count != 255):
break
# copy literals
if debug:
print("copy literals - literal_length=" + str(literal_length))
for n in range(literal_length):
byte = getByte()
if debug:
print("literal byte copy n=" + str(n) + ", to offset " + str(len(unpacked)) + ", with byte " + str(hex(byte)))
unpacked.append( byte )
# compressed data always ends with literals, check for eof here.
if debug:
print("compressed_size=" + str(len(compressed)) + ", uncompressed_size=" + str(len(uncompressed)) + ", buffersize=" + str(len(unpacked)))
# mark eof if we've decoded all of the compressed data
eof = self.index == len(compressed)
if not eof:
# now do the match copy
match_count = token & 15
match_length = match_count + 4
if debug:
print("match_count=" + str(match_count) + ", match_length=" + str(match_length))
offset_token = getByte() # only 1 byte for offset in the LZ48 format
if debug:
print("offset_token=" + str(offset_token))
offset = len(unpacked) - offset_token
if (match_count == 15):
while True:
match_count = getByte()
match_length += match_count
if debug:
print("match_count=" + str(match_count) + ", match_length=" + str(match_length))
if (match_count != 255):
break
if debug:
print("copy matches, offset=" + str(offset) + ", match_length=" + str(match_length))
# copy match sequence
for n in range(match_length):
byte = unpacked[offset]
if debug:
print("match byte copy n=" + str(n) + ", from offset=" + str(offset) + ", to offset " + str(len(unpacked)) + ", with byte " + str(hex(byte)))
offset += 1
unpacked.append(byte)
# check the results
assert len(unpacked) == len(uncompressed)
assert unpacked == uncompressed
print(" Test LZ4 unpack passed. \n")
#----------------------------------------------------------
# Process(filename)
# Convert the given VGM file to a compressd VGC file
#----------------------------------------------------------
def process(self, src_filename, dst_filename, buffersize = 255, use_huffman = True):
# load the VGM file, or alternatively interpret as a binary
if src_filename.lower()[-4:] == ".vgm":
vgm = VgmStream(src_filename)
data_block = vgm.as_binary()
else:
fh = open(src_filename, 'rb')
data_block = bytearray(fh.read())
fh.close()
data_offset = 0
# parse the header
header_size = data_block[0] # header size
play_rate = data_block[1] # play rate
if header_size == 5 and play_rate == 50:
packet_count = data_block[2] + data_block[3]*256 # packet count LO
duration_mm = data_block[4] # duration mm
duration_ss = data_block[5] # duration ss
data_offset = header_size+1
data_offset += data_block[data_offset]+1
data_offset += data_block[data_offset]+1
print("header_size=" +str(header_size))
print("play_rate="+str(play_rate))
print("packet_count="+str(packet_count))
print("duration_mm="+str(duration_mm))
print("duration_ss="+str(duration_ss))
print("data_offset="+str(data_offset))
else:
print("No header.")
print("")
# Trim off the header data. The rest is raw data.
data_block = data_block[data_offset:]
#----------------------------------------------------------
# Begin VGM packer suite
#----------------------------------------------------------
# Ok the definitive packed VGM format is:
# 1. Register data split into 8 streams, 3x 16-bit tones, 1x 8-bit channel3 tones 4x 8-bit volumes.
# 2. Register command bits are stripped
# 3. Channel3 tone stream replaces runs with 0x0F to signal no change, plus 0x08 is appended as an EOF marker
# 4. All 8 streams are RLE compressed, using top 4bits as run length
# 5. Output stream is LZ4 frame/block format
# 6. All 8 streams are LZ4 compressed using 255 match distance and 8-bit offsets at maximum optimal parser setting
# 7. All 8 streams are optionally huffman compressed
# 8. The LZ4 magic number is altered from [04 22 4d 18] to [56 47 43 00] (so that it is no longer seen as LZ4 compatible) [byte 3 bit6=1=LZ4-16bit, =0=LZ4-8bit]
# 9. If huffman is applied, the magic number is [56 47 43 80] [byte 3 bit7=1=+Huffman]
# We might be able to support 16-bit offsets later. WIP/TODO. Magic number would be [56 47 43 40] (plain LZ4) or [56 47 43 C0] with huffman
lz4 = LZ4()
level = 9
#window = 255 # this is for 8-bit machines after all
lz4.setCompression(level)#, window)
# enable the high compression mode
if buffersize < 256: #self.LZ48:
lz4.optimizedCompression(True)
else:
# high compression mode, requires 16Kb workspace but crunches like a boss.
lz4.setCompression(level, buffersize)
lz4.optimizedCompression(False)
#if self.HIGH_COMPRESSION:
# windowsize = 2048
# lz4.setCompression(level, windowsize)
# lz4.optimizedCompression(False)
#----------------------------------------------------------
# Unpack the register data into 11 separate data streams
#----------------------------------------------------------
registers = self.split_raw(data_block, True)
# test packer for raw data unsplit
if False:
stream = bytearray()
for i in range(len(registers[0])):
for r in range(len(registers)):
stream.append(registers[r][i])
output = bytearray()
lz4.beginFrame(output)
# re-write LZ4 magic number if incompatible
if self.LZ48 or use_huffman: #self.ENABLE_HUFFMAN:
n = 0x00
if use_huffman: #self.ENABLE_HUFFMAN:
n |= 0x80
output[0] = 0x56
output[1] = 0x47
output[2] = 0x43
output[3] = n
# LZ4 Compress the 8 data stream
compressed_block = lz4.compressBlock( stream )
self.testUnpackLZ4(compressed_block, stream)
output += compressed_block
# Step 5 - write the output file
lz4.endFrame(output)
self.report(lz4, data_block, output, 8, "Paired 8 register blocks [01][23][45][6][7][8][9][A] WITH register masks ")
# write the lz4 compressed file.
open("simon.vgc", "wb").write( output )
#------------------------------------------------------------------------------
# Construct the optimal VGC file format output
#------------------------------------------------------------------------------
# check there's no odd noise settings
if True:
invalid_noise_range = False
for n in range(len(registers[6])):
noise = registers[6][n]
if noise > 7:
print(" - Found invalid noise register setting of " + str(noise) + ", at offset " + str(n))
invalid_noise_range = True
# Step 1 - reformat the register data streams
streams = []
streams.append( self.rle2( self.combine_registers( registers, [0, 1]) ) ) # tone0 HI/LO
streams.append( self.rle2( self.combine_registers( registers, [2, 3]) ) ) # tone1 HI/LO
streams.append( self.rle2( self.combine_registers( registers, [4, 5]) ) ) # tone2 HI/LO
streams.append( self.rle( self.diff( registers[6], 0x0f ) ) ) # tone3 (is diffed also so we create skip commands - 0x0f)
streams.append( self.rle( registers[7] ) ) # v0
streams.append( self.rle( registers[8] ) ) # v1
streams.append( self.rle( registers[9] ) ) # v2
streams.append( self.rle( registers[10] ) ) # v3
if self.OUTPUT_RAWDATA:
# write a raw data version of the file in the most optimal data format
# (so we can see how other compressors compare with it)
count = 0
for s in streams:
open(dst_filename+"." + str(count) + ".part", "wb").write( s )
count += 1
# Step 2 - LZ4 compress these streams
# Output the LZ4 frame header
output = bytearray()
lz4.beginFrame(output)
# re-write LZ4 magic number if incompatible
if self.LZ48 or use_huffman: #self.ENABLE_HUFFMAN:
n = 0x00
if use_huffman: #self.ENABLE_HUFFMAN:
n |= 0x80
output[0] = 0x56
output[1] = 0x47
output[2] = 0x43
output[3] = n
# LZ4 Compress the 8 data streams
for i in range(len(streams)):
#print("lz4 compressing stream #" + str(i))
stream = streams[i]
compressed_block = lz4.compressBlock( stream )
self.testUnpackLZ4(compressed_block, stream)
streams[i] = compressed_block
# Step 3 - Huffcode these streams (optional - better ratio, lower decoder performance)
if use_huffman: #self.ENABLE_HUFFMAN:
huffman = Huffman()
# our decoder only supports upto 16-bit codes.
huffman.MAX_CODE_BIT_LENGTH = 16
# analyse the compressed data stream
compressed_data = bytearray()
for s in streams:
compressed_data += s[4:] # skip block headers so we dont add unwanted symbols to the alphabet
# build the optimal code tree
huffman.build(compressed_data)
# Create an uncompressed huffman table LZ4 block
header_block = huffman.addHeader(bytearray(), bytearray())
lz4.setCompression(0)
output += lz4.compressBlock( header_block )
# Emit huffman encoded blocks as uncompressed LZ4 blocks
for i in range(len(streams)):
s = streams[i][4:]
huffdata = huffman.encode( s, header = False ) # we skip the first 4 bytes of the LZ4 block (the block header)
print(' HUF Pack in=' + str(len(s)) + ', out=' + str(len(huffdata)) + ", saving=" + str(len(s)-len(huffdata)) )
streams[i] = lz4.compressBlock( huffdata )
# Step 4 - Serialise the blocks
for s in streams:
output += s
# Step 5 - write the output file
lz4.endFrame(output)
self.report(lz4, data_block, output, 8, "Paired 8 register blocks [01][23][45][6][7][8][9][A] WITH register masks ")
# write the lz4 compressed file.
open(dst_filename, "wb").write( output )
#------------------------------------------------------------------------
# Main()
#------------------------------------------------------------------------
import argparse
# Determine if running as a script
if __name__ == '__main__':
print("VgmPacker.py : VGM music compressor for 8-bit CPUs")
print("Written in 2019 by Simon Morris, https://github.com/simondotm/vgm-packer")
print("")
epilog_string = "Notes:\n"
epilog_string += " Buffer size <256 bytes emits 8-bit LZ4 offsets, medium compression, faster decoding, 2Kb workspace\n"
epilog_string += " Buffer size >255 bytes emits 16-bit LZ4 offsets, higher compression, slower decoding, Size*8 workspace\n"
epilog_string += " Enabling huffman will result in slightly better compression, but slower and more variable decoding speed\n"
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=epilog_string)
parser.add_argument("input", help="VGM source file (must be single SN76489 PSG format) [input]")
parser.add_argument("-o", "--output", metavar="<output>", help="write VGC file <output> (default is '[input].vgc')")
parser.add_argument("-b", "--buffer", type=int, default=255, metavar="<n>", help="Set decoder buffer size to <n> bytes, default: 255")
parser.add_argument("-n", "--huffman", help="Enable huffman compression", default=False, action="store_true")
parser.add_argument("-v", "--verbose", help="Enable verbose mode", action="store_true")
args = parser.parse_args()
src = args.input
dst = args.output
if dst == None:
dst = os.path.splitext(src)[0] + ".vgc"
# check for missing files
if not os.path.isfile(src):
print("ERROR: File '" + src + "' not found")
sys.exit()
packer = VgmPacker()
packer.VERBOSE = args.verbose
packer.process(src, dst, args.buffer, args.huffman)