-
Notifications
You must be signed in to change notification settings - Fork 0
/
uniswap_example.py
89 lines (79 loc) · 2.56 KB
/
uniswap_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import argparse
import json
import os
from itertools import product
import verbs
from verbs.batch_runner import batch_run
from verbs_examples.uniswap import plotting, sim
from verbs_examples.utils import post_processing
if __name__ == "__main__":
parser = argparse.ArgumentParser(prog="Uniswap agent-based simulation")
parser.add_argument("--seed", type=int, default=101, help="Random seed")
parser.add_argument(
"--n_steps", type=int, default=100, help="Number of steps of the simulation"
)
parser.add_argument("--sigma", type=float, default=0.3, help="GBM volatility")
parser.add_argument("--mu", type=float, default=0.0, help="GBM drift")
parser.add_argument(
"--batch_runner",
action="store_true",
help="Run batch of simulations over different simulation parameters",
)
parser.add_argument(
"--cache",
action="store_true",
help="Generate a new request cache file.",
)
parser.add_argument(
"--alchemy_key",
type=str,
help="Generate a new request cache file.",
)
parser.add_argument(
"--block",
type=int,
default=19163600,
help="Ethereum Block number for mainnet forking",
)
args = parser.parse_args()
with open(os.path.join("verbs_examples", "uniswap", "cache.json"), "r") as f:
cache_json = json.load(f)
if args.cache:
assert (
args.alchemy_key is not None
), "Alchemy key required, set with '--alchemy_key' argument"
cache = sim.init_cache(
args.alchemy_key,
args.block,
args.seed,
args.n_steps,
)
else:
cache = verbs.utils.cache_from_json(cache_json)
if args.batch_runner:
# run a batch of simulations
parameters_samples = [
dict(mu=mu, sigma=sigma)
for mu, sigma in product([0.0, 0.1, -0.1], [0.1, 0.2, 0.3])
]
batch_results = batch_run(
sim.runner,
n_steps=args.n_steps,
n_samples=10,
parameters_samples=parameters_samples,
cache=cache,
show_progress=False,
)
post_processing.save(batch_results, path="results/sim_uniswap_gbm")
else:
# single simulation
env = verbs.envs.EmptyEnvRandom(args.seed, cache=cache)
results = sim.runner(
env,
args.seed,
args.n_steps,
mu=args.mu,
sigma=args.sigma,
show_progress=True,
)
plotting.plot_results(results)