-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPartition.py
260 lines (212 loc) · 9.25 KB
/
Partition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import tvm
from tvm import relay
from tvm.contrib import graph_runtime
from tvm.relay import testing
from util import get_network
import copy
from math import floor, ceil, log2
import numpy as np
from os import path, _exit
import pickle
import threading
import time
class PerfInfo:
def __init__(self, exec_t, io_t):
self.exec_time = exec_t
self.io_time = io_t
def getTimes(self):
return self.exec_time, self.io_time
def getSummedTime(self):
return self.exec_time + self.io_time
class Partitioner:
def __init__(self, env):
self.env = env
self.with_io_time = True
self.table_path = 'table_' + env.network
self.test_batches_gpu = [1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129]
self.test_batches_cpu = self.test_batches_gpu[:-2] # max: 127
self.perf_table = {}
self.benchmark_time = 0.
self.offload_trial = 1
self.tolerate_limit = 1
self.base_var_limit = 1
self.test_limit = 3
self.offload_thresh = 1.
def checkPerfTable(self):
print('Checking Performance Table...')
if path.exists(self.table_path):
with open(self.table_path, 'rb') as table_file:
self.perf_table = pickle.load(table_file)
for dev in self.env.devices:
if dev.dev_type == 'gpu':
test_batches = self.test_batches_gpu
else:
test_batches = self.test_batches_cpu
if dev.name not in self.perf_table:
self.perf_table[dev.name] = {}
max_checked_batch = 0
print('testing', dev.name, '...')
else:
print(dev.name, 'exists in the table')
max_checked_batch = max(self.perf_table[dev.name].keys())
if max_checked_batch >= test_batches[-1]:
continue
# start with the smallest batch size
if max_checked_batch == 0: start_idx = 0
else: start_idx = test_batches.index(max_checked_batch) + 1
batch_size = dev.batch_size = test_batches[start_idx]
print(' restart testing from batch size %d...' % (batch_size))
net, params, input_shape, output_shape = \
get_network(name=self.env.network, batch_size=batch_size)
with relay.build_config(opt_level=self.env.opt_level):
graph, lib, params = relay.build(net, target=dev.target, params=params)
exec_time, io_time = dev.run(graph, lib, params, input_shape, self.env.test_times, 'test')
if exec_time <= 0: break
prev_time = exec_time
prev_batch = batch_size
self.perf_table[dev.name][batch_size] = PerfInfo(exec_time/batch_size, io_time/batch_size)
for i in range(start_idx + 1, len(test_batches)):
batch_size = dev.batch_size = test_batches[i]
exec_time = float('inf')
# batch_cnt = 0
# build_time = time.time()
net, params, input_shape, output_shape = \
get_network(name=self.env.network, batch_size=batch_size)
with relay.build_config(opt_level=self.env.opt_level):
graph, lib, params = relay.build(net, target=dev.target, params=params)
# build_time = time.time() - build_time
# print('<%s> build time: %.3f sec' % (dev.name, build_time))
# while exec_time > prev_time * (batch_size / prev_batch) and batch_cnt <= self.test_limit:
# exec_time, io_time = dev.run(graph, lib, params, input_shape, self.env.test_times, 'test')
# if exec_time <= 0: break
# batch_cnt += 1
exec_time, io_time = dev.run(graph, lib, params, input_shape, self.env.test_times, 'test')
if exec_time <= 0: break
prev_time = exec_time
prev_batch = batch_size
self.perf_table[dev.name][batch_size] = PerfInfo(exec_time/batch_size, io_time/batch_size)
with open(self.table_path, 'wb') as table_file:
pickle.dump(self.perf_table, table_file)
def estimateDevTime(self, dev, batch_size):
if batch_size == 0:
return 0
dev_perf = self.perf_table[dev.name]
test_batches = self.test_batches_gpu
if dev.dev_type == 'cpu':
test_batches = self.test_batches_cpu
if batch_size in dev_perf:
return dev_perf[batch_size].exec_time * batch_size
max_key = max(dev_perf.keys())
if batch_size > max_key:
return dev_perf[max_key].exec_time * batch_size
min_val = 2**int(log2(batch_size))+1
max_val = 2*(min_val-1)-1
xp = [min_val, max_val]
yp_exec = [dev_perf[xp[0]].exec_time, dev_perf[xp[1]].exec_time]
intp_time = np.interp(batch_size, xp, yp_exec) * batch_size
intp_io_time = 0.
if self.with_io_time:
yp_io = [dev_perf[xp[0]].io_time, dev_perf[xp[1]].io_time]
intp_io_time = np.interp(batch_size, xp, yp_io) * batch_size
return intp_time + intp_io_time
def getMaxDiffDev(self):
ret_dev = None
max_val = float('-inf')
for dev in self.env.devices:
if dev.diff >= max_val:
ret_dev = dev
max_val = dev.diff
return ret_dev
def getInitBaseDev(self):
ret_dev = None
min_val = float('inf')
for dev in self.env.devices:
dev_time = self.estimateDevTime(dev, self.env.batch_size)
if dev_time < min_val:
ret_dev = dev
min_val = dev_time
return ret_dev
def getNextBaseDev(self):
ret_dev = None
max_val = float('-inf')
for dev in self.env.devices:
dev_time = self.estimateDevTime(dev, self.env.batch_size)
if dev_time > max_val:
ret_dev = dev
max_val = dev_time
return ret_dev
def offloadDev(self, offload_dev, base_dev, max_time):
if self.offload_trial > base_dev.batch_size:
return
dev_times = []
off_dev_time = 0.0
for dev in self.env.devices:
if dev == base_dev: continue
batch_size = dev.batch_size
if dev == offload_dev:
batch_size += self.offload_trial
eval_time = self.estimateDevTime(dev, batch_size)
if dev == offload_dev:
off_dev_time = eval_time
dev_times.append(eval_time)
for dev_time in dev_times:
if dev_time > max_time * self.offload_thresh:
return
offload_dev.trial = self.offload_trial
offload_dev.eval_time = off_dev_time
offload_dev.diff = max_time - offload_dev.eval_time
def startPartition(self):
self.benchmark_time = time.time()
self.checkPerfTable()
self.benchmark_time = time.time() - self.benchmark_time
print('\nStart Partitioning...')
for dev in self.env.devices:
dev.batch_size = 0
base_dev = self.getInitBaseDev()
base_dev.batch_size = self.env.batch_size
cnt = 0
offloaded_cnt = 1
tolerate_cnt = base_var_cnt = 0
threads = []
search_time = time.time()
while base_var_cnt < self.base_var_limit:
loop_time = time.time()
if cnt > 0 and tolerate_cnt > self.tolerate_limit:
base_dev = self.getNextBaseDev()
base_var_cnt += 1
tolerate_cnt = 0
max_time = self.estimateDevTime(base_dev, base_dev.batch_size - 1)
self.offload_trial = 2**tolerate_cnt
for dev in self.env.devices:
dev.trial = 0
dev.diff = float('-inf')
if len(self.env.devices) > 2:
for dev in self.env.devices:
if dev == base_dev: continue
t = threading.Thread(target=self.offloadDev, args=(dev, base_dev, max_time))
threads.append(t)
t.start()
for t in threads:
t.join()
else: # threads are not needed
for dev in self.env.devices:
if dev == base_dev: continue
self.offloadDev(dev, base_dev, max_time)
offload_dev = self.getMaxDiffDev()
if offload_dev is None: break
offloaded_cnt = offload_dev.trial
if offloaded_cnt > 0:
base_dev.batch_size -= offloaded_cnt
offload_dev.batch_size += offloaded_cnt
tolerate_cnt = 0
else:
tolerate_cnt += 1
cnt += 1
loop_time = time.time() - loop_time
print("[%2d]" % (cnt), self.env.getBatches(), "%.2f ms" % (loop_time * 1000))
if base_dev.batch_size == 1:
break
for dev in self.env.devices:
dev.predict_time = self.estimateDevTime(dev, dev.batch_size)
search_time = (time.time() - search_time) * 1000
print('Partitioning finished in %.2f ms\n' % (search_time))