-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
36 lines (29 loc) · 1.03 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import pickle
from flask import Flask,request,app,jsonify,url_for,render_template
import numpy as np
import pandas as pd
app=Flask(__name__)
## Load the model
regmodel=pickle.load(open('regmodel.pkl','rb'))
scalar = pickle.load(open('scaling.pkl','rb'))
@app.route('/')
def home():
return render_template('home.html')
@app.route('/predict_api',methods=['POST'])
def predict_api():
data=request.json['data']
print(data)
print(np.array(list(data.values())).reshape(1,-1))
new_data = scalar.transform(np.array(list(data.values())).reshape(1,-1))
output = regmodel.predict(new_data)
print(output[0])
return jsonify(output[0])
@app.route('/predict', methods=['POST'])
def predict():
data=[float(x) for x in request.form.values()]
final_input=scalar.transform(np.array(data).reshape(1,-1))
print(final_input)
output = regmodel.predict(final_input)[0]
return render_template("home.html", prediction_text = "The predicted house price is {}".format(output))
if __name__=="__main__":
app.run(debug=True)