-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy path001.2D_Graph_Derivative_of_all_information_Integral.py
63 lines (47 loc) · 1.92 KB
/
001.2D_Graph_Derivative_of_all_information_Integral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import sympy as sp
import plotly.graph_objects as go
import ipywidgets as widgets
import pandas as pd
from IPython.display import display, clear_output
# Define symbolic variables
x, a = sp.symbols('x a')
# Define the expression and integrate
expression = x * sp.exp(a * x)
integral_result = (1 / a**2) * (a * x - 1) * sp.exp(a * x)
# Initialize interactive sliders
a_slider = widgets.FloatSlider(value=1.0, min=0.1, max=2.0, step=0.1, description='a')
display(a_slider)
# Create a figure with Plotly for interactive visualization
fig = go.Figure()
# Create a pandas DataFrame for data management
data = pd.DataFrame(columns=['x', 'Original Function', 'Integrated Result'])
# Define x values for plotting
x_values = np.linspace(0, 2, 400)
# Define update function for slider
def update_figure(change):
a_val = a_slider.value
# Calculate original and integrated functions
original_y = x_values * np.exp(a_val * x_values)
integrated_y = (np.exp(a_val * x_values) / (a_val**2)) * (a_val * x_values - 1)
# Update Plotly traces
fig.data = [] # Clear previous traces
fig.add_trace(go.Scatter(x=x_values, y=original_y, name='Original Function'))
fig.add_trace(go.Scatter(x=x_values, y=integrated_y, name='Integrated Result'))
# Update DataFrame
data['x'] = x_values
data['Original Function'] = original_y
data['Integrated Result'] = integrated_y
# Display the updated DataFrame
clear_output(wait=True)
display(data)
# Connect slider to the update function
a_slider.observe(update_figure, names='value')
# Update layout for Plotly figure
fig.update_layout(title='Integration of x * e^(a * x)', xaxis_title='x', yaxis_title='y')
# Show the Plotly figure
fig.show()
# Additional mathematical calculations and expressions
derivative_expression = sp.diff(integral_result, x)
# Display derivative expression
print("Derivative of Integral:", derivative_expression)