-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdefense.py
225 lines (159 loc) · 7.38 KB
/
defense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import numpy as np
import torch
import torch.nn as nn
import os
import sys
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader
from torchvision import transforms
from torchsummary import summary
import copy
import pickle
from optparse import OptionParser
from util import make_one_hot
from dataset import SampleDataset
from model import UNet, SegNet, DenseNet, autoencoder,autoencoder2
from loss import dice_score
from worker import AEDetector, SimpleReformer, Classifier, operate, filters
def get_args():
parser = OptionParser()
parser.add_option('--data_path', dest='data_path',type='string',
default='data/samples', help='data path')
parser.add_option('--model_path', dest='model_path',type='string',
default='checkpoints/', help='model_path')
parser.add_option('--reformer_path', dest='reformer_path',type='string',
default='checkpoints/', help='reformer_path')
parser.add_option('--detector_path', dest='detector_path',type='string',
default='checkpoints/', help='detector_path')
parser.add_option('--classes', dest='classes', default=28, type='int',
help='number of classes')
parser.add_option('--channels', dest='channels', default=1, type='int',
help='number of channels')
parser.add_option('--width', dest='width', default=256, type='int',
help='image width')
parser.add_option('--height', dest='height', default=256, type='int',
help='image height')
parser.add_option('--model', dest='model', type='string',
help='model name(UNet, SegNet, DenseNet)')
parser.add_option('--reformer', dest='reformer', type='string',
help='reformer name(autoencoder1 or autoencoder2)')
parser.add_option('--detector', dest='detector', type='string',
help='detector name(autoencoder1 or autoencoder2)')
parser.add_option('--gpu', dest='gpu',type='string',
default='gpu', help='gpu or cpu')
parser.add_option('--model_device1', dest='model_device1', default=0, type='int',
help='device1 index number')
parser.add_option('--model_device2', dest='model_device2', default=-1, type='int',
help='device2 index number')
parser.add_option('--model_device3', dest='model_device3', default=-1, type='int',
help='device3 index number')
parser.add_option('--model_device4', dest='model_device4', default=-1, type='int',
help='device4 index number')
parser.add_option('--defense_model_device', dest='defense_model_device', default=0, type='int',
help='defense_model_device gpu index number')
(options, args) = parser.parse_args()
return options
def test(model, args):
data_path = args.data_path
n_channels = args.channels
n_classes = args.classes
data_width = args.width
data_height = args.height
gpu = args.gpu
# Hyper paremter for MagNet
thresholds = [0.01, 0.05, 0.001, 0.005]
reformer_model = None
if args.reformer == 'autoencoder1':
reformer_model = autoencoder(n_channels)
elif args.reformer == 'autoencoder2':
reformer_model = autoencoder2(n_channels)
else :
print("wrong reformer model : must be autoencoder1 or autoencoder2")
raise SystemExit
print('reformer model')
summary(reformer_model, input_size=(n_channels, data_height, data_width), device = 'cpu')
detector_model = None
if args.detector == 'autoencoder1':
detector_model = autoencoder(n_channels)
elif args.detector == 'autoencoder2':
detector_model = autoencoder2(n_channels)
else :
print("wrong detector model : must be autoencoder1 or autoencoder2")
raise SystemExit
print('detector model')
summary(detector_model, input_size=(n_channels, data_height, data_width), device = 'cpu')
# set device configuration
device_ids = []
if gpu == 'gpu' :
if not torch.cuda.is_available() :
print("No cuda available")
raise SystemExit
device = torch.device(args.model_device1)
device_defense = torch.device(args.defense_model_device)
device_ids.append(args.model_device1)
if args.model_device2 != -1 :
device_ids.append(args.model_device2)
if args.model_device3 != -1 :
device_ids.append(args.model_device3)
if args.model_device4 != -1 :
device_ids.append(args.model_device4)
else :
device = torch.device("cpu")
device_defense = torch.device("cpu")
detector = AEDetector(detector_model, device_defense, args.detector_path, p=2)
reformer = SimpleReformer(reformer_model, device_defense, args.reformer_path)
classifier = Classifier(model, device, args.model_path, device_ids)
# set testdataset
test_dataset = SampleDataset(data_path)
test_loader = DataLoader(
test_dataset,
batch_size=10,
num_workers=4,
)
print('test_dataset : {}, test_loader : {}'.format(len(test_dataset), len(test_loader)))
# Defense with MagNet
print('test start')
for thrs in thresholds :
print('----------------------------------------')
counter = 0
avg_score = 0.0
thrs = torch.tensor(thrs)
with torch.no_grad():
for batch_idx, (inputs, labels) in enumerate(test_loader):
inputs = inputs.float()
labels = labels.to(device).long()
target = make_one_hot(labels[:,0,:,:], n_classes, device)
operate_results = operate(reformer, classifier, inputs)
all_pass, _ = filters(detector, inputs, thrs)
if len(all_pass) == 0:
continue
filtered_results = operate_results[all_pass]
pred = filtered_results.to(device).float()
target = target[all_pass]
loss = dice_score(pred, target)
avg_score += loss.data.cpu().numpy()
# statistics
counter += 1
del inputs, labels, pred, target, loss
if counter:
avg_score = avg_score / counter
print('threshold : {:.4f}, avg_score : {:.4f}'.format(thrs, avg_score))
else :
print('threshold : {:.4f} , no images pass from filter'.format(thrs))
if __name__ == "__main__":
args = get_args()
n_channels = args.channels
n_classes = args.classes
model = None
if args.model == 'UNet':
model = UNet(in_channels = n_channels, n_classes = n_classes)
elif args.model == 'SegNet':
model = SegNet(in_channels = n_channels, n_classes = n_classes)
elif args.model == 'DenseNet':
model = DenseNet(in_channels = n_channels, n_classes = n_classes)
else :
print("wrong model : must be UNet, SegNet, or DenseNet")
raise SystemExit
print('segmentation model')
summary(model, input_size=(n_channels, args.height, args.width), device = 'cpu')
test(model, args)