-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstack_visualizer.py
194 lines (153 loc) · 7.57 KB
/
stack_visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
from matplotlib import pyplot as plt
import stack_manager
"""
Author: Samuel Lehmann
Network with him at: https://www.linkedin.com/in/samuellehmann/
"""
HISTOGRAM_BINS = 50
LIMIT_TEXT_SPACING = 0.1
def arrow_diagram(axs, stackup_steps, min_target_length=None, max_target_length=None, display_absolute_range=True):
"""
Creates an arrow diagram for the given stackup steps
:param axs: The axes the arrow diagram should be created on
:param stackup_steps: The list of stackup steps to create the arrow diagram for
:param min_target_length: Used to create the "target zone"
:param max_target_length: Used to create the "target zone"
:param display_absolute_range: Whether the absolute range zone should be displayed
:return:
"""
axs.axvline(0, label='Datum', alpha=0.6)
if min_target_length is not None and max_target_length is not None:
axs.axvspan(min_target_length, max_target_length, color='green', zorder=-1, label='Target', alpha=0.3)
abs_max = 0.0
abs_min = 0.0
all_abs_calculated = True
head_width = len(stackup_steps)/25
# draw arrows
last_step_x = 0
labels = []
for stackup_step in enumerate(stackup_steps):
if stackup_step[1].mid_length > 0:
colour_string = "Green"
else:
colour_string = "Red"
if not stackup_step[1].abs_max or not stackup_step[1].abs_min:
all_abs_calculated = False
else:
abs_max += stackup_step[1].abs_max
abs_min += stackup_step[1].abs_min
axs.arrow(y=stackup_step[0], dy=0, x=last_step_x, dx=stackup_step[1].mid_length,
width=head_width / 3,
length_includes_head=True, head_width=head_width, color=colour_string)
last_step_x = last_step_x + stackup_step[1].mid_length
label = stackup_step[1].part_name
if stackup_step[1].description:
label += ", " + stackup_step[1].description
labels.append(label)
if display_absolute_range and all_abs_calculated:
axs.axvspan(abs_min, abs_max, color='grey', zorder=-1, label='Specification Limits', alpha=0.3)
axs.set_yticks(range(len(stackup_steps)))
axs.set_yticklabels(labels, fontsize=8)
axs.invert_yaxis()
axs.set_title('Stackup Arrow Diagram')
a, _ = axs.get_legend_handles_labels()
# Only create a legend if there are valid entries
if a:
axs.legend(bbox_to_anchor=(0.8, 1), loc="upper left")
return axs
def histogram(axs, lengths, length_bounds=None, abs_bounds=None, title_prefix="Histogram Of Overall Distribution"):
"""
Generates a histogram for the given lengths values
:param axs: The axes the arrow diagram should be created on
:param lengths: A numpy array of lengths, for which the histogram should be made
:param length_bounds: The minimum and maximum acceptable length in a tuple. Can be left as None.
Used to show boundaries.
:param abs_bounds: Used to create the "target zone". Minimum and maximum in a tuple. Can be left as None.
:param title_prefix: Graph is given the name f'{title_prefix}, {len(lengths)} Samples'
:return:
"""
# Convert the axis from polar coordinates
fig = axs.get_figure()
axs.remove()
axs = fig.add_subplot(1, 1, 1)
axs.cla()
axs.hist(lengths, histtype='step', bins=HISTOGRAM_BINS, zorder=3, color='white')
axs.set_title(f'{title_prefix}, {len(lengths)} Samples')
if abs_bounds is not None and abs_bounds[0] is not None and abs_bounds[1] is not None:
axs.axvspan(abs_bounds[0], abs_bounds[1], color='grey', zorder=1, label='Absolute Range', alpha=0.3)
axs.axvline(abs_bounds[0], color='grey', zorder=2, linestyle='--')
axs.axvline(abs_bounds[1], color='grey', zorder=2, linestyle='--')
if length_bounds is not None and length_bounds[0] is not None and length_bounds[1] is not None:
axs.axvspan(length_bounds[0], length_bounds[1], color='green',
zorder=-1, label="Within Specification Limits", alpha=0.3)
x0, x1 = axs.get_xlim()
y0, y1 = axs.get_ylim()
if length_bounds is not None and length_bounds[1] is not None:
out_range = [i for i in lengths if i > length_bounds[1]]
if len(out_range) > 0:
out_range_percent = 100.0 * len(out_range) / len(lengths)
axs.axvspan(length_bounds[1], x1, color='red', zorder=1, alpha=0.1, label="Outside Specification Limits")
axs.axvline(length_bounds[1], color='red', zorder=2, linestyle='--')
axs.text(x=length_bounds[1] + LIMIT_TEXT_SPACING, y=((y1 - y0) * 0.85),
s=f'{out_range_percent:.001f}% Above\nMaximum',
color='red', horizontalalignment='left')
if length_bounds is not None and length_bounds[0] is not None:
out_range = [i for i in lengths if i < length_bounds[0]]
if len(out_range) > 0:
out_range_percent = 100.0 * len(out_range) / len(lengths)
axs.axvspan(x0, length_bounds[0], color='red', zorder=1, alpha=0.1)
axs.axvline(length_bounds[0], color='red', zorder=2, linestyle='--')
axs.text(x=length_bounds[0] - LIMIT_TEXT_SPACING, y=((y1 - y0) * 0.85),
s=f'{out_range_percent:.001f}% Below\nMinimum',
color='red', horizontalalignment='right')
# Set the x limits back to what they were before the "fail range" reset them
axs.set_xlim([x0, x1])
axs.set_xlim([x0, x1])
axs.set_xlabel("Dimension")
axs.set_ylabel("Frequency")
# Only create a legend if there are valid entries
a, _ = axs.get_legend_handles_labels()
if a:
axs.legend(bbox_to_anchor=(1, 1), loc="upper right")
return axs
def radial_diagram(axs, lengths, length_bounds=None):
"""
Generates a radial diagram for the given lengths values
:param axs: The axes the arrow diagram should be created on
:param lengths: A numpy array of lengths, for which the histogram should be made
:param length_bounds: The minimum and maximum acceptable length in a tuple. Can be left as None.
Used to show boundaries.
:return:
"""
# Base the alpha off of the number of points that are used
alpha = 5000 / len(lengths[0])
alpha = alpha if alpha < 1.0 else 1.0
alpha = alpha if alpha > 0.1 else 0.1
magnitudes = stack_manager.lengths_to_magnitudes(lengths)
np.random.shuffle(magnitudes)
thetas = [np.arctan(lengths[1], lengths[0])]
thetas = [theta * 360.0 / 2.0 / np.pi for theta in thetas]
# Convert the axis to polar coordinates
fig = axs.get_figure()
axs.remove()
axs = fig.add_subplot(1, 1, 1, projection="polar")
axs.scatter(thetas, magnitudes, label='Samples', color="grey", alpha=alpha)
x0, x1 = axs.get_xlim()
y0, y1 = axs.get_ylim()
if length_bounds is not None and length_bounds is not None:
# Create the outer red boundaries
theta = np.linspace(0., 2. * np.pi, 80, endpoint=True)
axs.fill_between(theta, length_bounds, max(x0, x1, y0, y1), color="red", alpha=0.1, zorder=1,
label="Outside Specification Limits")
axs.add_patch(
plt.Circle((0, 0), length_bounds, color="green", alpha=0.1, zorder=1, label="Within Specification Limits",
transform=axs.transData._b, ))
# Set the x limits back to what they were before the "fail range" reset them
axs.set_xlim([x0, x1])
axs.set_ylim([0.0, y1])
# Only create a legend if there are valid entries
a, _ = axs.get_legend_handles_labels()
if a:
axs.legend(bbox_to_anchor=(-0.1, 1.1), loc="upper left")
return axs