-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathreferences.bib
362 lines (320 loc) · 11 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
@book{agresti2002categorical,
title={Categorical data analysis},
author={Agresti, Alan},
volume={792},
year={2002},
publisher={John Wiley \& Sons},
url={https://onlinelibrary.wiley.com/doi/book/10.1002/0471249688}
}
@book{blitzstein2019introduction,
title={Introduction to Probability},
author={Blitzstein, Joseph K and Hwang, Jessica},
year={2019},
publisher={CRC Press}
}
@article{mckee2023neuropathologic,
title={Neuropathologic and clinical findings in young contact sport athletes exposed to repetitive head impacts},
author={McKee, Ann C and Mez, Jesse and Abdolmohammadi, Bobak and Butler, Morgane and Huber, Bertrand Russell and Uretsky, Madeline and Babcock, Katharine and Cherry, Jonathan D and Alvarez, Victor E and Martin, Brett and others},
journal={JAMA neurology},
volume={80},
number={10},
pages={1037--1050},
year={2023},
publisher={American Medical Association}
}
@article{albert1993bayesian,
title={Bayesian analysis of binary and polychotomous response data},
author={Albert, James H and Chib, Siddhartha},
journal={Journal of the American statistical Association},
pages={669--679},
year={1993},
publisher={JSTOR}
}
@article{polson2013bayesian,
title={Bayesian inference for logistic models using {P}{\'o}lya--gamma latent variables},
author={Polson, Nicholas G and Scott, James G and Windle, Jesse},
journal={Journal of the American statistical Association},
volume={108},
number={504},
pages={1339--1349},
year={2013},
publisher={Taylor \& Francis}
}
@article{friedman2010regularization,
title={Regularization paths for generalized linear models via coordinate descent},
author={Friedman, Jerome and Hastie, Trevor and Tibshirani, Rob},
journal={Journal of statistical software},
volume={33},
number={1},
pages={1},
year={2010},
publisher={NIH Public Access}
}
@article{lee2014proximal,
title={Proximal {N}ewton-type methods for minimizing composite functions},
author={Lee, Jason D and Sun, Yuekai and Saunders, Michael A},
journal={SIAM Journal on Optimization},
volume={24},
number={3},
pages={1420--1443},
year={2014},
publisher={SIAM}
}
@book{boyd2004convex,
title={Convex Optimization},
author={Boyd, Stephen P and Vandenberghe, Lieven},
year={2004},
publisher={Cambridge university press}
}
@article{wainwright2008graphical,
title={Graphical models, exponential families, and variational inference},
author={Wainwright, Martin J and Jordan, Michael I},
journal={Foundations and Trends{\textregistered} in Machine Learning},
volume={1},
number={1--2},
pages={1--305},
year={2008},
publisher={Now Publishers, Inc.}
}
@book{efron2022exponential,
title={Exponential families in theory and practice},
author={Efron, Bradley},
year={2022},
publisher={Cambridge University Press}
}
@book{gelman1995bayesian,
title={Bayesian Data Analysis},
author={Gelman, Andrew and Carlin, John B and Stern, Hal S and Vehtari, Aki and Rubin, Donald B},
year={1995},
publisher={Chapman and Hall/CRC}
}
@article{windle2014sampling,
title={Sampling P{\'o}lya-gamma random variates: alternate and approximate techniques},
author={Windle, Jesse and Polson, Nicholas G and Scott, James G},
journal={arXiv preprint arXiv:1405.0506},
year={2014}
}
@article{blei2014build,
title={Build, compute, critique, repeat: {D}ata analysis with latent variable models},
author={Blei, David M},
journal={Annual Review of Statistics and Its Application},
volume={1},
pages={203--232},
year={2014},
publisher={Annual Reviews}
}
@book{bishop2006pattern,
title={Pattern Recognition and Machine Learning},
author={Bishop, Christopher},
year={2006},
publisher={Springer},
}
@article{kingma2019introduction,
title={An introduction to variational autoencoders},
author={Kingma, Diederik P and Welling, Max},
journal={Foundations and Trends{\textregistered} in Machine Learning},
volume={12},
number={4},
pages={307--392},
year={2019},
publisher={Now Publishers, Inc.}
}
@book{goodfellow2016deep,
title={Deep Learning},
author={Ian Goodfellow and Yoshua Bengio and Aaron Courville},
publisher={MIT Press},
note={\url{http://www.deeplearningbook.org}},
year={2016}
}
@article{turner2023introduction,
title={An Introduction to Transformers},
author={Turner, Richard E},
journal={arXiv preprint arXiv:2304.10557},
year={2023}
}
@inproceedings{smith2023simplified,
title={Simplified State Space Layers for Sequence Modeling},
author={Jimmy T.H. Smith and Andrew Warrington and Scott Linderman},
booktitle={The Eleventh International Conference on Learning Representations },
year={2023},
}
@article{gu2023mamba,
title={Mamba: Linear-time sequence modeling with selective state spaces},
author={Gu, Albert and Dao, Tri},
journal={arXiv preprint arXiv:2312.00752},
year={2023}
}
@article{turner2024denoising,
title={Denoising Diffusion Probabilistic Models in Six Simple Steps},
author={Turner, Richard E and Diaconu, Cristiana-Diana and Markou, Stratis and Shysheya, Aliaksandra and Foong, Andrew YK and Mlodozeniec, Bruno},
journal={arXiv preprint arXiv:2402.04384},
year={2024}
}
@article{hoff2002latent,
title={Latent space approaches to social network analysis},
author={Hoff, Peter D and Raftery, Adrian E and Handcock, Mark S},
journal={Journal of the American Statistical Association},
volume={97},
number={460},
pages={1090--1098},
year={2002},
publisher={Taylor \& Francis}
}
@article{hoff2007modeling,
title={Modeling homophily and stochastic equivalence in symmetric relational data},
author={Hoff, Peter},
journal={Advances in neural information processing systems},
volume={20},
year={2007}
}
@article{aldous1981representations,
title={Representations for partially exchangeable arrays of random variables},
author={Aldous, David J},
journal={Journal of Multivariate Analysis},
volume={11},
number={4},
pages={581--598},
year={1981},
publisher={Elsevier}
}
@techreport{hoover1979relations,
title={Relations on Probability Spaces and Arrays of Random Variables.},
author={Hoover, Douglas},
institution={Institute for Advanced Study, Princeton, NJ},
year={1979}
}
@article{orbanz2013bayesian,
title={Bayesian Models of Graphs, Arrays, and Other Exchangeable Random Structures},
author={Orbanz, P and Roy, DM},
journal={arXiv},
volume={37},
number={02},
pages={1--25},
year={2013}
}
@article{bloem2018random,
title={Random-walk models of network formation and sequential {M}onte {C}arlo methods for graphs},
author={Bloem-Reddy, Benjamin and Orbanz, Peter},
journal={Journal of the Royal Statistical Society Series B: Statistical Methodology},
volume={80},
number={5},
pages={871--898},
year={2018},
publisher={Oxford University Press}
}
@inproceedings{tieleman2008training,
title={Training restricted {B}oltzmann machines using approximations to the likelihood gradient},
author={Tieleman, Tijmen},
booktitle={Proceedings of the 25th international conference on Machine learning},
pages={1064--1071},
year={2008}
}
@article{song2020score,
title={Score-based generative modeling through stochastic differential equations},
author={Song, Yang and Sohl-Dickstein, Jascha and Kingma, Diederik P and Kumar, Abhishek and Ermon, Stefano and Poole, Ben},
journal={arXiv preprint arXiv:2011.13456},
year={2020}
}
@article{song2019generative,
title={Generative modeling by estimating gradients of the data distribution},
author={Song, Yang and Ermon, Stefano},
journal={Advances in neural information processing systems},
volume={32},
year={2019}
}
@article{ho2020denoising,
title={Denoising diffusion probabilistic models},
author={Ho, Jonathan and Jain, Ajay and Abbeel, Pieter},
journal={Advances in neural information processing systems},
volume={33},
pages={6840--6851},
year={2020}
}
@inproceedings{sohl2015deep,
title={Deep unsupervised learning using nonequilibrium thermodynamics},
author={Sohl-Dickstein, Jascha and Weiss, Eric and Maheswaranathan, Niru and Ganguli, Surya},
booktitle={International conference on machine learning},
pages={2256--2265},
year={2015},
organization={PMLR}
}
@article{campbell2022continuous,
title={A continuous time framework for discrete denoising models},
author={Campbell, Andrew and Benton, Joe and De Bortoli, Valentin and Rainforth, Thomas and Deligiannidis, George and Doucet, Arnaud},
journal={Advances in Neural Information Processing Systems},
volume={35},
pages={28266--28279},
year={2022}
}
@article{bottou1998online,
title={Online learning and stochastic approximations},
author={Bottou, L{\'e}on and others},
journal={On-line learning in neural networks},
volume={17},
number={9},
pages={142},
year={1998}
}
@incollection{robbins1971convergence,
title={A convergence theorem for non negative almost supermartingales and some applications},
author={Robbins, Herbert and Siegmund, David},
booktitle={Optimizing methods in statistics},
pages={233--257},
year={1971},
publisher={Elsevier}
}
@article{blei2017variational,
title={Variational inference: {A} review for statisticians},
author={Blei, David M and Kucukelbir, Alp and McAuliffe, Jon D},
journal={Journal of the American statistical Association},
volume={112},
number={518},
pages={859--877},
year={2017},
publisher={Taylor \& Francis}
}
@article{mohamed2020monte,
title={Monte {C}arlo Gradient Estimation in Machine Learning.},
author={Mohamed, Shakir and Rosca, Mihaela and Figurnov, Michael and Mnih, Andriy},
journal={Journal of Machine Learning Research},
volume={21},
number={132},
pages={1--62},
year={2020}
}
@article{duchi2011adaptive,
title={Adaptive subgradient methods for online learning and stochastic optimization.},
author={Duchi, John and Hazan, Elad and Singer, Yoram},
journal={Journal of machine learning research},
volume={12},
number={7},
year={2011}
}
@article{kingma2014adam,
title={Adam: A method for stochastic optimization},
author={Kingma, Diederik P and Ba, Jimmy},
journal={arXiv preprint arXiv:1412.6980},
year={2014}
}
@ARTICLE{Kiselev2019-bt,
title = "Challenges in unsupervised clustering of single-cell {RNA-seq}
data",
author = "Kiselev, Vladimir Yu and Andrews, Tallulah S and Hemberg, Martin",
abstract = "Single-cell RNA sequencing (scRNA-seq) allows researchers to
collect large catalogues detailing the transcriptomes of
individual cells. Unsupervised clustering is of central
importance for the analysis of these data, as it is used to
identify putative cell types. However, there are many challenges
involved. We discuss why clustering is a challenging problem from
a computational point of view and what aspects of the data make
it challenging. We also consider the difficulties related to the
biological interpretation and annotation of the identified
clusters.",
journal = "Nat. Rev. Genet.",
volume = 20,
number = 5,
pages = "273--282",
month = may,
year = 2019,
language = "en"
}