-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathw2v_utils.py
102 lines (90 loc) · 3.68 KB
/
w2v_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import gzip
from pathlib import Path
import re
import torch
import numpy as np
from tqdm import tqdm
from safetensors.numpy import save_file, load_file
class Word2Vec:
def __init__(self, vectors, words):
self.vectors = vectors
self.words = words
self.word2id = {word: i for i, word in enumerate(self.words)}
self.id2word = {value: key for key, value in self.word2id.items()}
@classmethod
def from_gz(cls, path):
with gzip.open(Path(path).resolve(), "rt", encoding="utf-8") as file:
num_words, vector_size = file.readline().strip().split()
num_words = int(num_words)
vector_size = int(vector_size)
words = []
vectors = []
for line in tqdm(file, total=num_words):
if line:
word, *vector = line.strip().split()
vector = torch.tensor([float(el) for el in vector]).unsqueeze(0)
words.append(word)
vectors.append(vector)
vectors = torch.cat(vectors, dim=0)
if vectors.shape[0] != num_words:
raise ValueError(
f"The number of words doesn't match: `{num_words}` != `{vectors.shape[0]}`"
)
if vectors.shape[1] != vector_size:
raise ValueError(
f"Vector size mismatch: `{vector_size}` != `{vectors.shape[1]}`"
)
return cls(vectors=vectors, words=words)
@classmethod
def load(cls, save_dir: str):
save_dir = Path(save_dir).resolve()
vectors = load_file(save_dir / "word2vec.safetensors")["vectors"]
with open(save_dir / "vocab.txt") as file:
words = file.read().split("\n")
return cls(vectors=vectors, words=words)
def save(self, save_dir):
save_dir = Path(save_dir).resolve()
save_dir.mkdir(exist_ok=True, parents=True)
save_file(
tensor_dict=dict(vectors=self.vectors.numpy()),
filename=save_dir / "word2vec.safetensors",
)
with open(save_dir / "vocab.txt", "w") as file:
file.write("\n".join(self.words))
@staticmethod
def tokenize(text: str):
return re.findall(r"\w+", text)
def encode_single(self, text: str):
tokens = self.tokenize(text)
vectors = []
for token in tokens:
word_id = self.word2id.get(token, None)
if word_id is not None:
vectors.append(self.vectors[word_id])
if vectors:
return np.mean(np.vstack(vectors), axis=0)
else:
return np.zeros(self.vectors.shape[1])
def encode(
self,
sentence_list: list[str],
batch_size: int = 1024,
show_progress_bar: bool = False,
) -> np.array:
final_embeddings = []
for index in tqdm(range(0, len(sentence_list)), disable=not show_progress_bar):
embeddings = self.encode_single(sentence_list[index])
final_embeddings.append(embeddings)
return np.vstack(final_embeddings)
def _search(self, vector: np.array, k: int):
similarities = np.dot(
np.expand_dims(vector / np.linalg.norm(vector), axis=0),
(self.vectors / np.linalg.norm(self.vectors)).transpose(),
).squeeze()
sorted_similarities = np.argsort(similarities)[::-1][:k].tolist()
return [self.id2word[index] for index in sorted_similarities]
def search_by_text(self, sentence: str, k: int = 100):
vector = self.encode_single(sentence)
return self._search(vector, k)
def search_by_vector(self, vector: np.array, k: int = 100):
return self._search(vector, k)