-
Notifications
You must be signed in to change notification settings - Fork 8
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
TypeError: loss() missing 1 required positional argument: 'img_metas' #1
Comments
halo, have you solved this problem? |
Hi, I met the same error in training process.Have you solved the problem? @LeonHardt427 @tianyuluan @MMz000 @Jacky-gsq |
I have solved the problem(TypeError: loss() missing 1 required positional argument: 'img_metas'). |
Hello, may I ask how do you solve this problem and where do you need to modify the code?@SherlockHua1995 |
I face this issue in |
I have the same error |
I faced the same error, but I have solved it. The env. : |
I meet an Error when running Centernet2 using mmdetection. Customed dataset was used by coco format. Error message is showed as follows:
Traceback (most recent call last):
File "tools/train.py", line 188, in
main()
File "tools/train.py", line 184, in main
meta=meta)
File "/ProjectRoot/mmdetection/mmdet/apis/train.py", line 170, in train_detector
runner.run(data_loaders, cfg.workflow)
File "/usr/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 127, in run
epoch_runner(data_loaders[i], **kwargs)
File "/usr/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 50, in train
self.run_iter(data_batch, train_mode=True, **kwargs)
File "/usr/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 30, in run_iter
**kwargs)
File "/usr/lib/python3.7/site-packages/mmcv/parallel/data_parallel.py", line 67, in train_step
return self.module.train_step(*inputs[0], **kwargs[0])
File "/ProjectRoot/mmdetection/mmdet/models/detectors/base.py", line 237, in train_step
losses = self(**data)
File "/usr/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/usr/lib/python3.7/site-packages/mmcv/runner/fp16_utils.py", line 98, in new_func
return old_func(*args, **kwargs)
File "/ProjectRoot/mmdetection/mmdet/models/detectors/base.py", line 171, in forward
return self.forward_train(img, img_metas, **kwargs)
File "/ProjectRoot/mmdetection/mmdet/models/detectors/two_stage.py", line 140, in forward_train
proposal_cfg=proposal_cfg)
File "/ProjectRoot/mmdetection/mmdet/models/dense_heads/base_dense_head.py", line 54, in forward_train
losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
TypeError: loss() missing 1 required positional argument: 'img_metas'
------log is:
2021-08-18 10:59:05,420 - mmdet - INFO - Environment info:
sys.platform: linux
Python: 3.7.5rc1 (default, Aug 5 2021, 15:04:37) [GCC 8.5.0]
CUDA available: True
GPU 0: GeForce RTX 2080 Ti
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 10.2, V10.2.89
GCC: gcc (GCC) 8.5.0
PyTorch: 1.8.1+cu102
PyTorch compiling details: PyTorch built with:
TorchVision: 0.9.1+cu102
OpenCV: 4.5.3
MMCV: 1.3.11
MMCV Compiler: GCC 8.5
MMCV CUDA Compiler: 10.2
MMDetection: 2.15.1+682f03d
2021-08-18 10:59:06,215 - mmdet - INFO - Distributed training: False
2021-08-18 10:59:07,115 - mmdet - INFO - Config:
model = dict(
type='CenterNet2',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[512, 1024, 2048],
out_channels=256,
num_outs=5,
add_extra_convs='on_output',
relu_before_extra_convs=True),
rpn_head=dict(
type='CustomCenterNetHead',
num_classes=1,
norm='BN',
in_channel=256,
num_features=5,
num_cls_convs=4,
num_box_convs=4,
num_share_convs=0,
use_deformable=False,
only_proposal=True,
fpn_strides=[8, 16, 32, 64, 128],
loss_center_heatmap=dict(
type='CustomGaussianFocalLoss',
alpha=0.25,
ignore_high_fp=0.85,
loss_weight=0.5),
loss_bbox=dict(type='GIoULoss', loss_weight=1.0)),
roi_head=dict(
type='CustomCascadeRoIHead',
num_stages=3,
stage_loss_weights=[1, 1, 1],
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[8, 16, 32, 64, 128]),
bbox_head=[
dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=1,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
loss_weight=1.0)),
dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=1,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.05, 0.05, 0.1, 0.1]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
loss_weight=1.0)),
dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=1,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.033, 0.033, 0.067, 0.067]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
]),
train_cfg=dict(
rpn=dict(),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=2000,
nms=dict(type='nms', iou_threshold=0.9),
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.8,
neg_iou_thr=0.8,
min_pos_iou=0.8,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)
]),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.9),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.7),
max_per_img=100)))
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
(1333, 768), (1333, 800)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=4,
workers_per_gpu=1,
train=dict(
type='CocoDataset',
ann_file='data/coco/annotations/instances_train2017.json',
img_prefix='data/coco/train2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]),
val=dict(
type='CocoDataset',
ann_file='data/coco/annotations/instances_test2017.json',
img_prefix='data/coco/test2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='CocoDataset',
ann_file='data/coco/annotations/instances_test2017.json',
img_prefix='data/coco/test2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]))
evaluation = dict(interval=1, metric='bbox')
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=1000,
warmup_ratio=0.0001,
step=[10, 15])
runner = dict(type='EpochBasedRunner', max_epochs=20)
checkpoint_config = dict(interval=1)
log_config = dict(
interval=50,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
custom_hooks = [dict(type='NumClassCheckHook')]
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1), ('val', 1)]
find_unused_parameters = True
work_dir = './work_dirs/centernet2_cascade_res50_fpn_1x_coco'
gpu_ids = range(0, 1)
2021-08-18 10:59:11,768 - mmdet - INFO - initialize ResNet with init_cfg {'type': 'Pretrained', 'checkpoint': 'torchvision://resnet50'}
2021-08-18 10:59:19,291 - mmdet - INFO - initialize FPN with init_cfg {'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'}
2021-08-18 10:59:20,857 - mmdet - INFO - initialize Shared2FCBBoxHead with init_cfg [{'type': 'Normal', 'std': 0.01, 'override': {'name': 'fc_cls'}}, {'type': 'Normal', 'std': 0.001, 'override': {'name': 'fc_reg'}}, {'type': 'Xavier', 'layer': 'Linear', 'override': [{'name': 'shared_fcs'}, {'name': 'cls_fcs'}, {'name': 'reg_fcs'}]}]
2021-08-18 10:59:21,948 - mmdet - INFO - initialize Shared2FCBBoxHead with init_cfg [{'type': 'Normal', 'std': 0.01, 'override': {'name': 'fc_cls'}}, {'type': 'Normal', 'std': 0.001, 'override': {'name': 'fc_reg'}}, {'type': 'Xavier', 'layer': 'Linear', 'override': [{'name': 'shared_fcs'}, {'name': 'cls_fcs'}, {'name': 'reg_fcs'}]}]
2021-08-18 10:59:22,985 - mmdet - INFO - initialize Shared2FCBBoxHead with init_cfg [{'type': 'Normal', 'std': 0.01, 'override': {'name': 'fc_cls'}}, {'type': 'Normal', 'std': 0.001, 'override': {'name': 'fc_reg'}}, {'type': 'Xavier', 'layer': 'Linear', 'override': [{'name': 'shared_fcs'}, {'name': 'cls_fcs'}, {'name': 'reg_fcs'}]}]
Name of parameter - Initialization information
backbone.conv1.weight - torch.Size([64, 3, 7, 7]):
PretrainedInit: load from torchvision://resnet50
backbone.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.conv1.weight - torch.Size([64, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.conv2.weight - torch.Size([64, 64, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn2.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn2.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.conv3.weight - torch.Size([256, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn3.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn3.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.downsample.0.weight - torch.Size([256, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.downsample.1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.downsample.1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.conv1.weight - torch.Size([64, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.conv2.weight - torch.Size([64, 64, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn2.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn2.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.conv3.weight - torch.Size([256, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn3.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn3.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.conv1.weight - torch.Size([64, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.conv2.weight - torch.Size([64, 64, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn2.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn2.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.conv3.weight - torch.Size([256, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn3.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn3.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.conv1.weight - torch.Size([128, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.conv2.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn2.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn2.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.conv3.weight - torch.Size([512, 128, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn3.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn3.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.downsample.0.weight - torch.Size([512, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.downsample.1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.downsample.1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.conv1.weight - torch.Size([128, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.conv2.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn2.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn2.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.conv3.weight - torch.Size([512, 128, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn3.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn3.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.conv1.weight - torch.Size([128, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.conv2.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn2.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn2.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.conv3.weight - torch.Size([512, 128, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn3.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn3.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.conv1.weight - torch.Size([128, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.conv2.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn2.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn2.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.conv3.weight - torch.Size([512, 128, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn3.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn3.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.conv1.weight - torch.Size([256, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.downsample.0.weight - torch.Size([1024, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.downsample.1.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.downsample.1.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.conv1.weight - torch.Size([512, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.conv2.weight - torch.Size([512, 512, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn2.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn2.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.conv3.weight - torch.Size([2048, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn3.weight - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn3.bias - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.downsample.0.weight - torch.Size([2048, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.downsample.1.weight - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.downsample.1.bias - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.conv1.weight - torch.Size([512, 2048, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.conv2.weight - torch.Size([512, 512, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn2.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn2.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.conv3.weight - torch.Size([2048, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn3.weight - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn3.bias - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.conv1.weight - torch.Size([512, 2048, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.conv2.weight - torch.Size([512, 512, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn2.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn2.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.conv3.weight - torch.Size([2048, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn3.weight - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn3.bias - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
neck.lateral_convs.0.conv.weight - torch.Size([256, 512, 1, 1]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.lateral_convs.0.conv.bias - torch.Size([256]):
The value is the same before and after calling
init_weights
of CenterNet2neck.lateral_convs.1.conv.weight - torch.Size([256, 1024, 1, 1]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.lateral_convs.1.conv.bias - torch.Size([256]):
The value is the same before and after calling
init_weights
of CenterNet2neck.lateral_convs.2.conv.weight - torch.Size([256, 2048, 1, 1]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.lateral_convs.2.conv.bias - torch.Size([256]):
The value is the same before and after calling
init_weights
of CenterNet2neck.fpn_convs.0.conv.weight - torch.Size([256, 256, 3, 3]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.fpn_convs.0.conv.bias - torch.Size([256]):
The value is the same before and after calling
init_weights
of CenterNet2neck.fpn_convs.1.conv.weight - torch.Size([256, 256, 3, 3]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.fpn_convs.1.conv.bias - torch.Size([256]):
The value is the same before and after calling
init_weights
of CenterNet2neck.fpn_convs.2.conv.weight - torch.Size([256, 256, 3, 3]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.fpn_convs.2.conv.bias - torch.Size([256]):
The value is the same before and after calling
init_weights
of CenterNet2neck.fpn_convs.3.conv.weight - torch.Size([256, 256, 3, 3]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.fpn_convs.3.conv.bias - torch.Size([256]):
The value is the same before and after calling
init_weights
of CenterNet2neck.fpn_convs.4.conv.weight - torch.Size([256, 256, 3, 3]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.fpn_convs.4.conv.bias - torch.Size([256]):
The value is the same before and after calling
init_weights
of CenterNet2rpn_head.cls_tower.0.weight - torch.Size([256, 256, 3, 3]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.cls_tower.0.bias - torch.Size([256]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.cls_tower.2.weight - torch.Size([256, 256, 3, 3]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.cls_tower.2.bias - torch.Size([256]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.cls_tower.4.weight - torch.Size([256, 256, 3, 3]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.cls_tower.4.bias - torch.Size([256]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.cls_tower.6.weight - torch.Size([256, 256, 3, 3]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.cls_tower.6.bias - torch.Size([256]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.bbox_tower.0.weight - torch.Size([256, 256, 3, 3]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.bbox_tower.0.bias - torch.Size([256]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.bbox_tower.2.weight - torch.Size([256, 256, 3, 3]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.bbox_tower.2.bias - torch.Size([256]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.bbox_tower.4.weight - torch.Size([256, 256, 3, 3]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.bbox_tower.4.bias - torch.Size([256]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.bbox_tower.6.weight - torch.Size([256, 256, 3, 3]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.bbox_tower.6.bias - torch.Size([256]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.scales.0.scale - torch.Size([]):
The value is the same before and after calling
init_weights
of CenterNet2rpn_head.scales.1.scale - torch.Size([]):
The value is the same before and after calling
init_weights
of CenterNet2rpn_head.scales.2.scale - torch.Size([]):
The value is the same before and after calling
init_weights
of CenterNet2rpn_head.scales.3.scale - torch.Size([]):
The value is the same before and after calling
init_weights
of CenterNet2rpn_head.scales.4.scale - torch.Size([]):
The value is the same before and after calling
init_weights
of CenterNet2rpn_head.agn_hm.weight - torch.Size([1, 256, 3, 3]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.agn_hm.bias - torch.Size([1]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.bbox_pred.weight - torch.Size([4, 256, 3, 3]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadrpn_head.bbox_pred.bias - torch.Size([4]):
Initialized by user-defined
init_weights
in CustomCenterNetHeadroi_head.bbox_head.0.fc_cls.weight - torch.Size([2, 1024]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.0.fc_cls.bias - torch.Size([2]):
NormalInit: mean=0, std=0.01, bias=0
roi_head.bbox_head.0.fc_reg.weight - torch.Size([4, 1024]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.0.fc_reg.bias - torch.Size([4]):
NormalInit: mean=0, std=0.001, bias=0
roi_head.bbox_head.0.shared_fcs.0.weight - torch.Size([1024, 12544]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.0.shared_fcs.0.bias - torch.Size([1024]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.0.shared_fcs.1.weight - torch.Size([1024, 1024]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.0.shared_fcs.1.bias - torch.Size([1024]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.1.fc_cls.weight - torch.Size([2, 1024]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.1.fc_cls.bias - torch.Size([2]):
NormalInit: mean=0, std=0.01, bias=0
roi_head.bbox_head.1.fc_reg.weight - torch.Size([4, 1024]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.1.fc_reg.bias - torch.Size([4]):
NormalInit: mean=0, std=0.001, bias=0
roi_head.bbox_head.1.shared_fcs.0.weight - torch.Size([1024, 12544]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.1.shared_fcs.0.bias - torch.Size([1024]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.1.shared_fcs.1.weight - torch.Size([1024, 1024]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.1.shared_fcs.1.bias - torch.Size([1024]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.2.fc_cls.weight - torch.Size([2, 1024]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.2.fc_cls.bias - torch.Size([2]):
NormalInit: mean=0, std=0.01, bias=0
roi_head.bbox_head.2.fc_reg.weight - torch.Size([4, 1024]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.2.fc_reg.bias - torch.Size([4]):
NormalInit: mean=0, std=0.001, bias=0
roi_head.bbox_head.2.shared_fcs.0.weight - torch.Size([1024, 12544]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.2.shared_fcs.0.bias - torch.Size([1024]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.2.shared_fcs.1.weight - torch.Size([1024, 1024]):
XavierInit: gain=1, distribution=normal, bias=0
roi_head.bbox_head.2.shared_fcs.1.bias - torch.Size([1024]):
XavierInit: gain=1, distribution=normal, bias=0
2021-08-18 10:59:31,962 - mmdet - INFO - Start running, host: wangzhan.wang@ide-container-online-5597-job-0-1629164823-0, work_dir: /ProjectRoot/mmdetection/work_dirs/centernet2_cascade_res50_fpn_1x_coco
2021-08-18 10:59:31,962 - mmdet - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) CheckpointHook
(NORMAL ) EvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook
before_train_epoch:
(VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) EvalHook
(NORMAL ) NumClassCheckHook
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook
before_train_iter:
(VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) EvalHook
(LOW ) IterTimerHook
after_train_iter:
(ABOVE_NORMAL) OptimizerHook
(NORMAL ) CheckpointHook
(NORMAL ) EvalHook
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook
after_train_epoch:
(NORMAL ) CheckpointHook
(NORMAL ) EvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook
before_val_epoch:
(NORMAL ) NumClassCheckHook
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook
before_val_iter:
(LOW ) IterTimerHook
after_val_iter:
(LOW ) IterTimerHook
after_val_epoch:
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) TensorboardLoggerHook
after_run:
(VERY_LOW ) TensorboardLoggerHook
2021-08-18 10:59:31,964 - mmdet - INFO - workflow: [('train', 1), ('val', 1)], max: 20 epochs
Traceback (most recent call last):
File "tools/train.py", line 188, in
main()
File "tools/train.py", line 184, in main
meta=meta)
File "/ProjectRoot/mmdetection/mmdet/apis/train.py", line 170, in train_detector
runner.run(data_loaders, cfg.workflow)
File "/usr/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 127, in run
epoch_runner(data_loaders[i], **kwargs)
File "/usr/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 50, in train
self.run_iter(data_batch, train_mode=True, **kwargs)
File "/usr/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 30, in run_iter
**kwargs)
File "/usr/lib/python3.7/site-packages/mmcv/parallel/data_parallel.py", line 67, in train_step
return self.module.train_step(*inputs[0], **kwargs[0])
File "/ProjectRoot/mmdetection/mmdet/models/detectors/base.py", line 237, in train_step
losses = self(**data)
File "/usr/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/usr/lib/python3.7/site-packages/mmcv/runner/fp16_utils.py", line 98, in new_func
return old_func(*args, **kwargs)
File "/ProjectRoot/mmdetection/mmdet/models/detectors/base.py", line 171, in forward
return self.forward_train(img, img_metas, **kwargs)
File "/ProjectRoot/mmdetection/mmdet/models/detectors/two_stage.py", line 140, in forward_train
proposal_cfg=proposal_cfg)
File "/ProjectRoot/mmdetection/mmdet/models/dense_heads/base_dense_head.py", line 54, in forward_train
losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
TypeError: loss() missing 1 required positional argument: 'img_metas'
The text was updated successfully, but these errors were encountered: