SambaParse is a Python library that simplifies the process of extracting and processing unstructured data using the Unstructured.io API. It provides a convenient wrapper around the Unstructured.io CLI tool, allowing you to ingest data from various sources, perform partitioning, chunking, embedding, and load the processed data into a vector database. It's designed to be used within AI Starter kits and SN Apps, unifying our data ingestion and document intelligence platform. This allows us to keep our code base centralized for data ingestion kits.
Before using SambaParse, make sure you have the following:
- Docker installed on your machine (or access to another API server)
- An Unstructured.io API key
Before using SambaParse, make sure you have the following:
-
Create a
.env
file in the ai-starter-kit root directory (not in the parsing folder root):UNSTRUCTURED_API_KEY=your_api_key_here
Using pyenv to manage virtualenv's is recommended Mac install instructions. See pyenv-virtualenv repo for more detailed instructions.
brew install pyenv-virtualenv
-
Create a python venv using python version 3.10.12
pyenv install 3.10.12 pyenv virtualenv 3.10.12 sambaparse pyenv activate sambaparse
-
Clone the ai-starter-kit repo and cd:
git clone https://github.com/sambanova/ai-starter-kit
-
cd into utils/parsing and pip install the requirements
pip install -r requirements.txt
-
cd into the unstructured-api foder and Install the unstructured-api make-file:
cd unstructured-api
-
Run
make install
-
Run The Web Server:
make run-web-app
This script will start the Unstructured API server using the specified API key and expose it on port 8005.
- Alternatively, if you have another Unstructured API server running on a different instance, make sure to update the
partition_endpoint
andunstructured_port
values in the YAML configuration file accordingly.
- Alternatively, if you have another Unstructured API server running on a different instance, make sure to update the
-
Import the
SambaParse
class from theai-starter-kit
library:from utils.parsing.sambaparse import SambaParse
-
Create a YAML configuration file (e.g.,
config.yaml
) to specify the desired settings for the ingestion process. Here's the configuration for use cases 1 and 2 ie local files and folders:processor: verbose: True output_dir: './output' num_processes: 2 sources: local: recursive: True confluence: api_token: 'your_confluence_api_token' user_email: 'your_email@example.com' url: 'https://your-confluence-url.atlassian.net' github: url: 'owner/repo' branch: 'main' google_drive: service_account_key: 'path/to/service_account_key.json' recursive: True drive_id: 'your_drive_id' partitioning: pdf_infer_table_structure: True skip_infer_table_types: [] strategy: 'auto' hi_res_model_name: 'yolox' ocr_languages: ['eng'] encoding: 'utf-8' fields_include: ['element_id', 'text', 'type', 'metadata', 'embeddings'] flatten_metadata: False metadata_exclude: [] metadata_include: [] partition_endpoint: 'http://localhost' unstructured_port: 8005 partition_by_api: True chunking: enabled: True strategy: 'basic' chunk_max_characters: 1500 chunk_overlap: 300 embedding: enabled: False provider: 'langchain-huggingface' model_name: 'intfloat/e5-large-v2' destination_connectors: enabled: False type: 'chroma' batch_size: 80 chroma: host: 'localhost' port: 8004 collection_name: 'snconf' tenant: 'default_tenant' database: 'default_database' qdrant: location: 'http://localhost:6333' collection_name: 'test' additional_processing: enabled: True extend_metadata: True replace_table_text: True table_text_key: 'text_as_html' return_langchain_docs: True convert_metadata_keys_to_string: True
Make sure to place the
config.yaml
file in the desired folder. -
Create an instance of the
SambaParse
class, passing the path to the YAML configuration file:sambaparse = SambaParse('path/to/config.yaml')
-
Use the
run_ingest
method to process your data:
-
For a single file:
source_type = 'local' input_path = 'path/to/your/file.pdf' additional_metadata = {'key': 'value'} texts, metadata_list, langchain_docs = sambaparse.run_ingest(source_type, input_path=input_path, additional_metadata=additional_metadata)
-
For a folder:
source_type = 'local' input_path = 'path/to/your/file.pdf' additional_metadata = {'key': 'value'} texts, metadata_list, langchain_docs = sambaparse.run_ingest(source_type, input_path=input_path, additional_metadata=additional_metadata)
-
For Confluence:
source_type = 'confluence' additional_metadata = {'key': 'value'} texts, metadata_list, langchain_docs = sambaparse.run_ingest(source_type, additional_metadata=additional_metadata)
Note that for conflence you must enable embedding and destinatation connectors automatically ie Chroma and turn off additional processing (ie langchain), an example yaml to do that is below
processor: verbose: True output_dir: './output' num_processes: 2 sources: local: recursive: True confluence: api_token: 'your_confluence_api_token' user_email: 'your_email@example.com' url: 'https://your-confluence-url.atlassian.net' github: url: 'owner/repo' branch: 'main' google_drive: service_account_key: 'path/to/service_account_key.json' recursive: True drive_id: 'your_drive_id' partitioning: pdf_infer_table_structure: True skip_infer_table_types: [] strategy: 'auto' hi_res_model_name: 'yolox' ocr_languages: ['eng'] encoding: 'utf-8' fields_include: ['element_id', 'text', 'type', 'metadata', 'embeddings'] flatten_metadata: False metadata_exclude: [] metadata_include: [] partition_endpoint: 'http://localhost' unstructured_port: 8005 partition_by_api: True chunking: enabled: True strategy: 'basic' chunk_max_characters: 1500 chunk_overlap: 300 embedding: enabled: True provider: 'langchain-huggingface' model_name: 'intfloat/e5-large-v2' destination_connectors: enabled: True type: 'chroma' batch_size: 80 chroma: host: 'localhost' port: 8004 collection_name: 'snconf' tenant: 'default_tenant' database: 'default_database' qdrant: location: 'http://localhost:6333' collection_name: 'test' additional_processing: enabled: False extend_metadata: True replace_table_text: True table_text_key: 'text_as_html' return_langchain_docs: True convert_metadata_keys_to_string: True
In addition for confluence you will need to have a Chroma Server running on port 8004, you can do this by running the docker command below
docker run -d --rm --name chromadb -v ./chroma:/chroma/chroma -e IS_PERSISTENT=TRUE -e ANONYMIZED_TELEMETRY=TRUE -p 8004:8000 chromadb/chroma:latest
The
run_ingest
method returns a tuple containing the extracted texts, metadata, and LangChain documents (ifreturn_langchain_docs
is set toTrue
in the configuration). -
- Process the returned data as needed:
texts
: A list of extracted text elements from the documents.metadata_list
: A list of metadata dictionaries for each text element.langchain_docs
: A list of LangChainDocument
objects, which combine the text and metadata.
The YAML configuration file allows you to customize various aspects of the ingestion process. Here are some of the key options:
processor
: Settings related to the processing of documents, such as the output directory and the number of processes to use.sources
: Configuration for different data sources, including local files, Confluence, GitHub, and Google Drive.partitioning
: Options for partitioning the documents, including the strategy, OCR languages, and API settings.chunking
: Settings for chunking the documents, such as enabling chunking, specifying the chunking strategy, and setting the maximum chunk size and overlap.embedding
: Options for embedding the documents, including enabling embedding, specifying the embedding provider, and setting the model name.additional_processing
: Configuration for additional processing steps, such as extending metadata, replacing table text, and returning LangChain documents.
Make sure to review and modify the configuration file according to your specific requirements.