-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_cifar10.py
234 lines (194 loc) · 9.52 KB
/
main_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from __future__ import print_function
from tqdm import *
import sys
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from models.resnet_cifar10 import *
from models.vgg_cifar10 import *
from models.utils_approx import rangeException
parser = argparse.ArgumentParser(description='Implementation of of Section V-A for `Precise Approximation of Convolutional Neural'
+ 'Networks for Homomorphically Encrypted Data.`')
parser.add_argument('--mode', default='inf', dest='mode', type=str,
help='Program mode. `train`: train randomly initialized model, '\
'`inf`: inference the proposed approximate deep learning model')
parser.add_argument('--gpu', default=0, dest='gpuid', type=int,
help='ID of GPU that is used for training and inference.')
parser.add_argument('--backbone', default='resnet20', dest='backbone', type=str,
help='Backbone model.')
parser.add_argument('--approx_method', default='proposed', dest='approx_method', type=str,
help='Method of approximating non-arithmetic operations. `proposed`: proposed composition of minimax polynomials, '\
'`square`: approximate ReLU as x^2, `relu_aq`: approximate ReLU as 2^-3*x^2+2^-1*x+2^-2. '\
'For `square` and `relu_aq`, we use exact max-pooling function.')
parser.add_argument('--batch_inf', default=128, dest='batch_inf', type=int,
help='Batch size for inference.')
parser.add_argument('--alpha', default=14, dest='alpha', type=int,
help='The precision parameter. Integers from 4 to 14 can be used.')
parser.add_argument('--B_relu', default=50.0, dest='B_relu', type=float,
help='The bound of approximation range for the approximate ReLU function.')
parser.add_argument('--B_max', default=50.0, dest='B_max', type=float,
help='The bound of approximation range for the approximate max-pooling function.')
parser.add_argument('--B_search', default=5.0, dest='B_search', type=float,
help='The size of the interval to find B such that all input values fall within the approximate region.')
parser.add_argument('--dataset_path', default='../dataset/CIFAR10', dest='dataset_path', type=str,
help='The path which contains the CIFAR10.')
parser.add_argument('--params_name', default='ours', dest='params_name', type=str,
help='The pre-trained parameters file name. Please omit `.pt`.')
args = parser.parse_args()
torch.cuda.set_device(args.gpuid)
params_path = ''.join(['./pretrained/cifar10/', args.backbone, '_', args.params_name, '.pt'])
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
cifar10_train = datasets.CIFAR10(args.dataset_path, train=True, download=True,
transform=transform_train)
loader_train = DataLoader(cifar10_train, batch_size=128)
cifar10_test = datasets.CIFAR10(args.dataset_path, train=False, download=True,
transform=transform_test)
loader_test = DataLoader(cifar10_test, batch_size=args.batch_inf)
dtype = torch.FloatTensor # the CPU datatype
gpu_dtype = torch.cuda.FloatTensor
def train(model, loss_fn, optimizer, scheduler, num_epochs=1):
for epoch in range(num_epochs):
print('Starting epoch %d / %d' % (epoch + 1, num_epochs))
model.train()
print('Training...')
for t, (x, y) in tqdm(enumerate(loader_train)):
torch.cuda.empty_cache()
x_var = Variable(x.cuda())
y_var = Variable(y.cuda().long())
scores = model(x_var)
loss = loss_fn(scores, y_var)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Evaluating...')
test_acc = check_accuracy(model, loader_test) * 100
print('Loss: %.4f, test accuracy: %.2f' % (loss.data, test_acc))
scheduler.step()
print('--------------------------')
def check_accuracy(model, loader, use_tqdm = False):
num_correct = 0
num_samples = 0
model.eval()
torch.cuda.empty_cache()
with torch.no_grad():
for x, y in (tqdm(loader) if use_tqdm else loader):
x_var = Variable(x.cuda())
scores = model(x_var)
_, preds = scores.data.cpu().max(1)
num_correct += (preds == y).sum()
num_samples += preds.size(0)
acc = float(num_correct) / num_samples
return acc
def checking_batchsize_inference(model):
model.eval()
with torch.no_grad():
for t, (x, y) in enumerate(loader_test):
x_var = Variable(x.cuda())
try:
_ = model(x_var)
except rangeException as e:
e.show()
print('The validity of the batch size cannot be checked since the given B is to small.')
print('Please give larger B_relu or B_max.')
sys.exit("Terminated.")
except Exception:
print('The batch size of INFERENCE seems to be large for your GPU.')
print('Your current batch size is ' + str(args.batch_inf) + '. Try reducing `--batch_inf`.')
sys.exit("Terminated.")
break
approx_dict_list = [{'alpha': args.alpha, 'B': args.B_relu, 'type': args.approx_method},
{'alpha': args.alpha, 'B': args.B_max, 'type': args.approx_method}]
if args.backbone == 'resnet20':
original_model = resnet20()
approx_model = resnet20(approx_dict_list)
elif args.backbone == 'resnet32':
original_model = resnet32()
approx_model = resnet32(approx_dict_list)
elif args.backbone == 'resnet44':
original_model = resnet44()
approx_model = resnet44(approx_dict_list)
elif args.backbone == 'resnet56':
original_model = resnet56()
approx_model = resnet56(approx_dict_list)
elif args.backbone == 'resnet110':
original_model = resnet110()
approx_model = resnet110(approx_dict_list)
elif args.backbone == 'vgg11bn':
original_model = vgg11_bn()
approx_model = vgg11_bn(approx_dict_list)
elif args.backbone == 'vgg13bn':
original_model = vgg13_bn()
approx_model = vgg13_bn(approx_dict_list)
elif args.backbone == 'vgg16bn':
original_model = vgg16_bn()
approx_model = vgg16_bn(approx_dict_list)
elif args.backbone == 'vgg19bn':
original_model = vgg19_bn()
approx_model = vgg19_bn(approx_dict_list)
original_model.cuda()
approx_model.cuda()
if args.mode == 'train':
if args.params_name == 'ours':
print('Please set your own name or use another name rather than `ours` '
'to avoid overwriting our pre-trained parameters used in the paper.')
sys.exit("Terminated.")
print("Training random initialized", args.backbone, "for CIFAR10")
print("")
loss_fn = nn.CrossEntropyLoss().cuda()
optimizer = optim.SGD(original_model.parameters(), lr=1e-3, momentum=0.9, weight_decay=5e-3, nesterov=True)
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[100, 150], last_epoch=-1)
train(original_model, loss_fn, optimizer, scheduler, num_epochs=200)
torch.save(original_model.state_dict(), params_path)
print("Saved pre-trained parameters. Path:", params_path)
if args.mode == 'inf':
original_model.load_state_dict(torch.load(params_path))
approx_model.load_state_dict(torch.load(params_path))
print("Used pre-trained parameter:", params_path)
print('==========================')
print("Inference the pre-trained original", args.backbone, "for CIFAR10")
original_model.load_state_dict(torch.load(params_path))
original_acc = check_accuracy(original_model, loader_test, use_tqdm=True) * 100
print("Test accuracy: %.2f" % original_acc)
print('==========================')
print("Inference the approximate", args.backbone, "with same pre-trained parameters for CIFAR10")
print("Precision parameter:", args.alpha)
print("")
# Check if given batch size is valid.
checking_batchsize_inference(approx_model)
while True:
try:
print("Trying to approximate inference...")
print("with B_ReLU = %.1f," % approx_dict_list[0]['B'])
print("and B_max = %.1f," % approx_dict_list[1]['B'])
approx_acc = check_accuracy(approx_model, loader_test, use_tqdm=True) * 100
print("Approximation success!")
break
except rangeException as e:
e.show()
if e.type == 'relu':
print("We increase B_ReLU", args.B_search, "and try inference again.")
approx_dict_list[0]['B'] += args.B_search
elif e.type == 'max':
print("We increase B_maxpooling", args.B_search, "and try inference again.")
approx_dict_list[1]['B'] += args.B_search
print('--------------------------')
print("")
print("Test accuracy: %.2f" % approx_acc)
rate = (approx_acc - original_acc) / original_acc * 100
print("Difference from the baseline: %.2f%%" % rate)