-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
625 lines (522 loc) · 23.4 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
import os
import cv2
import lmdb
import math
# import faiss
import numpy as np
import pyarrow as pa
from PIL import Image, ImageDraw, ImageFilter
from typing import List, Union
from refer import refer
import torch
from torch.utils.data import Dataset
from torchvision.transforms import functional as F
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
import spacy
import albumentations as A
from albumentations.pytorch import ToTensorV2
def normalize(img_w, img_h, box, tail=True):
xmin, ymin, xmax, ymax = box[:4]
new_box = [xmin/img_w, ymin/img_h, xmax/img_w, ymax/img_h]
new_box = np.clip(new_box, 0, 1).tolist()
if tail and len(box)>=4:
new_box.extend(box[4:])
return new_box
info = {
'refcoco': {
'train': 42404,
'val': 3811,
'val-test': 3811,
'testA': 1975,
'testB': 1810
},
'refcoco+': {
'train': 42278,
'val': 3805,
'val-test': 3805,
'testA': 1975,
'testB': 1798
},
'refcocog_u': {
'train': 42226,
'val': 2573,
'easy' : 69,
'hard' :70,
'val-test': 2573,
'test': 5023
},
'refcocog_g': {
'train': 44822,
'val': 5000,
'val-test': 5000
}
}
_tokenizer = _Tokenizer()
def tokenize(texts: Union[str, List[str]],
context_length: int = 77,
truncate: bool = False) -> torch.LongTensor:
"""
Returns the tokenized representation of given input string(s)
Parameters
----------
texts : Union[str, List[str]]
An input string or a list of input strings to tokenize
context_length : int
The context length to use; all CLIP models use 77 as the context length
truncate: bool
Whether to truncate the text in case its encoding is longer than the context length
Returns
-------
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
"""
if isinstance(texts, str):
texts = [texts]
sot_token = _tokenizer.encoder["<|startoftext|>"]
eot_token = _tokenizer.encoder["<|endoftext|>"]
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token]
for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
if truncate:
tokens = tokens[:context_length]
tokens[-1] = eot_token
else:
raise RuntimeError(
f"Input {texts[i]} is too long for context length {context_length}"
)
result[i, :len(tokens)] = torch.tensor(tokens)
return result
def loads_pyarrow(buf):
"""
Args:
buf: the output of `dumps`.
"""
return pa.deserialize(buf)
class RefDataset(Dataset):
def __init__(self, lmdb_dir, mask_dir, dataset, split, mode, input_size,
word_length, args):
super(RefDataset, self).__init__()
self.lmdb_dir = lmdb_dir
self.mask_dir = mask_dir
self.dataset = dataset
self.split = split
self.mode = mode
self.img_sz = input_size
self.input_size = (input_size, input_size)
#self.mask_size = [13, 26, 52]
self.word_length = word_length
self.mean = torch.tensor([0.48145466, 0.4578275,
0.40821073]).reshape(3, 1, 1)
self.std = torch.tensor([0.26862954, 0.26130258,
0.27577711]).reshape(3, 1, 1)
self.length = info[dataset][split]
self.env = None
self.args = args
self.aug = args.aug
# self.coco_transforms = make_coco_transforms(mode, cautious=False)
each_img_sz = int(input_size/math.sqrt(args.aug.num_bgs))
mean = (0.48145466, 0.4578275, 0.40821073) #(0.485, 0.456, 0.406)
std = (0.26862954, 0.26130258, 0.27577711) #(0.229, 0.224, 0.225)
self.resize_bg1 = A.Compose([
A.Resize(input_size, input_size, always_apply=True)])
self.resize_bg4 = A.Compose([
A.Resize(each_img_sz, each_img_sz, always_apply=True)],
additional_targets={'image1': 'image', 'image2': 'image', 'image3': 'image',
'mask1': 'mask', 'mask2': 'mask', 'mask3': 'mask',})
self.each_img_sz = each_img_sz
self.transforms = A.Compose([
A.Normalize(mean=mean, std=std),
ToTensorV2 (),
])
if self.mode != 'test':
## Bringing out logits
if self.dataset == 'refcoco' :
self.refer = refer.REFER(dataset='refcoco', splitBy='unc')
elif self.dataset == 'refcoco+' :
self.refer = refer.REFER(dataset='refcoco+', splitBy='unc')
elif self.dataset =='refcocog_u' :
self.refer = refer.REFER(dataset='refcocog', splitBy='umd')
print(f"Bringing out logits of {self.dataset} dataset")
## Tools by refer.REFER
ref_ids = self.refer.getRefIds(split=split)
self.img_ids = self.refer.getImgIds(ref_ids)
self.ref_id2idx = dict(zip(ref_ids, range(len(ref_ids)))) # ref_id -> idx(key)
self.idx2ref_id = dict(zip(range(len(ref_ids)), ref_ids)) # idx(key) -> ref_id
img_ids = self.refer.getImgIds(ref_ids)
# img_ids.sort()
self.img_id2idx = dict(zip(img_ids, range(len(img_ids)))) # ref_id -> idx(key)
self.idx2img_id = dict(zip(range(len(img_ids)), img_ids)) # idx(key) -> ref_id
else :
print("Test mode does not require logits of dataset")
if self.args.aug.blur :
self.blur = ImageFilter.GaussianBlur(100)
# index = faiss.IndexFlatIP(512)
# self.db = faiss.IndexIDMap2(index)
np.random.seed()
def _init_db(self):
self.env = lmdb.open(self.lmdb_dir,
subdir=os.path.isdir(self.lmdb_dir),
readonly=True,
lock=False,
readahead=False,
meminit=False)
with self.env.begin(write=False) as txn:
self.length = loads_pyarrow(txn.get(b'__len__'))
self.keys = loads_pyarrow(txn.get(b'__keys__'))
if self.args.dataset == 'refcocog_u' :
img2img_path = '/data2/projects/chaeyun/CRIS_R/logit_db/refcocog_u/refcocog_u_logit_i2i_score.lmdb'
text2img_path = '/data2/projects/chaeyun/CRIS_R/logit_db/refcocog_u/refcocog_u_logit_t2i_score_5k.lmdb'
elif self.args.dataset == 'refcoco' :
img2img_path = '/data2/projects/chaeyun/CRIS_R/logit_db/refcoco/refcoco_logit_i2i_score_5k.lmdb'
text2img_path = '/data2/projects/chaeyun/CRIS_R/logit_db/refcoco/refcoco_logit_t2i_score.lmdb'
elif self.args.dataset == 'refcoco+' :
img2img_path = '/data2/projects/chaeyun/CRIS_R/logit_db/refcoco+/refcocop_logit_i2i_score_5k.lmdb'
text2img_path = '/data2/projects/chaeyun/CRIS_R/logit_db/refcoco+/refcocop_logit_t2i_score.lmdb'
# default setting : t2i logit
self.t2i_env = lmdb.open(
text2img_path, subdir=False, max_readers=32,
readonly=True, lock=False,
readahead=False, meminit=False
)
with self.t2i_env.begin(write=False) as txn:
logit_length = loads_pyarrow(txn.get(b'__len__'))
self.logit_keys = loads_pyarrow(txn.get(b'__keys__'))
# self.nlp = spacy.load("en_core_web_sm")
if not self.aug.t2i_only :
self.i2i_env = lmdb.open(
img2img_path, subdir=False, max_readers=32,
readonly=True, lock=False,
readahead=False, meminit=False
)
with self.i2i_env.begin(write=False) as txn:
logit_length_i = loads_pyarrow(txn.get(b'__len__'))
self.logit_keys_i = loads_pyarrow(txn.get(b'__keys__'))
def __len__(self):
return self.length
def __getitem__(self, index):
# Delay loading LMDB data until after initialization: https://github.com/chainer/chainermn/issues/129
if self.env is None:
self._init_db()
env = self.env
with env.begin(write=False) as txn:
byteflow = txn.get(self.keys[index])
ref = loads_pyarrow(byteflow)
"""
Convert keys to ref_id
"""
ref_id = self.idx2ref_id[index]
ref_img_id = self.refer.Refs[ref_id]['image_id']
t2i_index = self.ref_id2idx[ref_id]
with self.t2i_env.begin(write=False) as txn:
t2i_byteflow = txn.get(self.logit_keys[t2i_index])
t2i_similarity = loads_pyarrow(t2i_byteflow)
target_sent_idx = np.random.choice(list(range(ref['num_sents'])), size=1, replace=False)[0]
sent = ref['sents'][target_sent_idx]
if not self.aug.t2i_only :
print("Both T2I and I2I")
i2i_index = self.img_id2idx[ref_img_id]
with self.i2i_env.begin(write=False) as txn:
i2i_byteflow = txn.get(self.logit_keys_i[i2i_index])
i2i_similarity = loads_pyarrow(i2i_byteflow)
invalid_choices = set([img_id for img_id, score in i2i_similarity if score > self.args.aug.i2i_sim_thres])
if self.aug.fp_restrict :
doc = self.nlp(sent)
target_noun = self.get_target_noun(sent, doc)
left_right = {"left" : [0, 2],
"right" : [1, 3]}
other_directions = {"top" :[0, 1],
"high" :[0, 1],
"above" :[0, 1],
"bottom" :[2, 3],
"low" :[2, 3],
"below" :[2, 3],
"under" :[2, 3],
"beneath" :[2, 3]
}
left_right_check = False
other_pos_check = False
for lr in left_right.keys() :
if lr in sent :
left_right_check = True
lr_cand = left_right[lr]
break
for other in other_directions.keys() :
if other in sent :
other_pos_check = True
other_cand = other_directions[other]
break
pos_check = left_right_check or other_pos_check
"""
Decide Mosaic Size
"""
## Train config
if self.mode == 'train':
if self.args.aug.num_bgs > 1:
aug_prob = self.aug.aug_prob
# Before retrieval_epoch: One Image or Random Mosaic
if self.args.aug.epoch < self.args.aug.retrieval_epoch:
if self.args.aug.mix_grid :
num_bgs = np.random.choice([1, 4, 9], p=[1-aug_prob, aug_prob/2, aug_prob/2]) #
mosaic_type = 'random'
else :
num_bgs = np.random.choice([1, 4], p=[1-aug_prob, aug_prob]) #
mosaic_type = 'random'
# Retrieval
else:
rand_prob = self.aug.rand_prob
retr_prob = self.aug.retr_prob
# After retrieval_epoch: Decide between One Image, Random Mosaic, or Retrieval Based Mosaic
choice = np.random.choice(['one', 'random', 'retrieval'], p=[1-(rand_prob + retr_prob), rand_prob, retr_prob])
mosaic_type = choice
if choice == 'one':
num_bgs = 1
elif self.args.aug.mix_grid :
num_bgs = np.random.choice([4, 9], p=[0.5, 0.5])
else :
num_bgs = 4
else:
num_bgs = 1
mosaic_type = 'one'
## Test, Val Config
else :
num_bgs = 1
mosaic_type ='one'
## Choosing dataloader strategy
if num_bgs > 1 :
if mosaic_type == 'retrieval':
sent_id = list(t2i_similarity.keys())[target_sent_idx]
if self.aug.t2i_only :
invalid_choices = set([img_id for img_id, score in t2i_similarity[sent_id] if score > self.args.aug.t2i_sim_thres])
valid_img_score_list = [pair[0] for pair in t2i_similarity[sent_id] if pair[0] not in invalid_choices]
len_valid = len(valid_img_score_list)
if len_valid == 0:
print(f"Valid image list is 0", len(invalid_choices))
valid_img_score_list = [pair[0] for pair in t2i_similarity[sent_id][-300:]]
if self.args.aug.top_k < 20 :
img_ids = list(np.random.choice(valid_img_score_list[:self.args.aug.top_k], size=num_bgs-1, replace=False))
elif len_valid < self.args.aug.top_k :
img_ids = list(np.random.choice(valid_img_score_list, size=num_bgs-1, replace=True))
else :
img_ids = list(np.random.choice(valid_img_score_list[:self.args.aug.top_k], size=num_bgs-1, replace=True))
ref_int = [self.refer.imgToRefs[i][0]['ref_id'] for i in img_ids]
keys = [str(self.ref_id2idx[k]).encode('utf-8') for k in ref_int]
else: # mosaic_type == 'random'
# Random Mosaic
keys = list(np.random.choice(self.keys, size=num_bgs-1, replace=False))
refs = []
for key in keys:
with env.begin(write=False) as txn:
byteflow = txn.get(key)
ref_other = loads_pyarrow(byteflow)
refs.append(ref_other)
## One Image (num_bgs = 1)
else:
keys = []
refs = []
if num_bgs == 1 :
insert_idx = np.random.choice(range(num_bgs))
else :
if self.aug.fp_restrict :
if left_right_check and other_pos_check :
intersection = list(set(lr_cand) & set(other_cand))
if intersection : insert_idx = intersection[0]
elif left_right_check :
insert_idx = np.random.choice(lr_cand)
elif other_pos_check :
insert_idx = np.random.choice(other_cand)
else :
insert_idx = np.random.choice(range(num_bgs))
else :
insert_idx = np.random.choice(range(num_bgs))
refs.insert(insert_idx, ref)
if self.args.aug.tgt_selection == 'fixed':
target_idx = insert_idx
target_ref = refs[target_idx]
# load items
imgs, masks, sents_arr, seg_ids = [], [], [], []
org_img_sizes = []
for ref in refs:
ori_img = cv2.imdecode(np.frombuffer(ref['img'], np.uint8),
cv2.IMREAD_COLOR)
img = cv2.cvtColor(ori_img, cv2.COLOR_BGR2RGB)
imgs.append(img)
org_img_sizes.append(img.shape[:2])
mask = cv2.imdecode(np.frombuffer(ref['mask'], np.uint8),
cv2.IMREAD_GRAYSCALE)
mask = mask / 255.
masks.append(mask)
seg_id = ref['seg_id']
seg_ids.append(seg_id)
sents_arr.append(ref['sents'])
# image resize and apply 4in1 augmentation
if num_bgs==1:
resized = self.resize_bg1(image=imgs[0], mask=masks[0])
imgs, masks = [resized['image']], [resized['mask']]
img = imgs[0]
else:
if self.args.aug.move_crs_pnt:
if self.args.aug.rand_crs :
print("Cross point random shift")
crs_y = np.random.randint(0, self.img_sz+1)
crs_x = np.random.randint(0, self.img_sz+1)
else :
print("Cross point shift within range")
quarter_sz = self.each_img_sz/2
crs_y = np.random.randint(quarter_sz, self.img_sz+1-quarter_sz)
crs_x = np.random.randint(quarter_sz, self.img_sz+1-quarter_sz)
else:
denum = int(math.sqrt(num_bgs))
crs_y = self.img_sz//denum
crs_x = self.img_sz//denum
imgs_resized = []
masks_resized = []
for i in range(num_bgs):
row = i // denum
col = i % denum
y_start = row * crs_y
y_end = y_start + crs_y
x_start = col * crs_x
x_end = x_start + crs_x
if y_end > self.img_sz or x_end > self.img_sz:
img_resized = np.zeros([crs_y, crs_x, 3])
mask_resized = np.zeros([crs_y, crs_x])
else:
resize_transform = A.Compose([
A.Resize(crs_y, crs_x, always_apply=True)
])
temp = resize_transform(image=imgs[i], mask=masks[i])
img_resized = temp['image']
mask_resized = temp['mask']
imgs_resized.append(img_resized)
masks_resized.append(mask_resized)
imgs = imgs_resized
masks = masks_resized
# scale effect ablation
if self.args.aug.blur:
imgs = [np.asarray(Image.fromarray(x).filter(self.blur)) if i!=insert_idx else x for i, x in enumerate(imgs)]
num_rows = num_cols = int(math.sqrt(num_bgs))
idxs = [(i*num_cols,i*num_cols+num_cols) for i in range(num_rows)]
img = [np.concatenate(imgs[_from:_to], axis=1) for (_from, _to) in idxs]
img = np.concatenate(img, axis=0).astype(np.uint8)
masks_arr = []
for bg_idx in range(num_bgs):
mask = masks[bg_idx]
temp = [mask if idx==bg_idx else np.zeros_like(masks[idx]) for idx in range(num_bgs)]
mask = [np.concatenate(temp[_from:_to], axis=1) for (_from, _to) in idxs]
mask = np.concatenate(mask, axis=0).astype(np.int32)
masks_arr.append(mask)
masks = masks_arr
mask = masks[target_idx]
mask = mask.astype(np.uint8)
mask[mask>0] = 1
img_size = img.shape[:2]
mat, mat_inv = self.getTransformMat(img_size, True)
img = cv2.warpAffine(
img,
mat,
self.input_size,
flags=cv2.INTER_CUBIC,
borderValue=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255])
sents = sents_arr[target_idx]
if self.mode=='train':
mask = cv2.warpAffine(mask,
mat,
self.input_size,
flags=cv2.INTER_LINEAR,
borderValue=0.)
sent = sents[target_sent_idx]
word_vec = tokenize(sent, self.word_length, True).squeeze(0)
img, mask = self.convert(img, mask)
return img, word_vec, mask
seg_id = seg_ids[target_idx]
mask_dir = os.path.join(self.mask_dir, str(seg_id) + '.png')
if self.mode == 'val':
sent = sents[0]
word_vec = tokenize(sent, self.word_length, True).squeeze(0)
img = self.convert(img)[0]
assert len(org_img_sizes)==1
params = {
'mask_dir': mask_dir,
'inverse': mat_inv,
'ori_size': np.array(org_img_sizes[0])
}
return img, word_vec, mask, params
else:
# sentence -> vector
img = self.convert(img)[0]
assert len(org_img_sizes)==1
params = {
'ori_img': ori_img,
'seg_id': seg_id,
'mask_dir': mask_dir,
'inverse': mat_inv,
'ori_size': np.array(org_img_sizes[0]),
'sents': sents
}
return img, mask, params
return ori_img, img, word_vecs, mask, pad_masks, seg_id, sents,
def getTransformMat(self, img_size, inverse=False):
ori_h, ori_w = img_size
inp_h, inp_w = self.input_size
scale = min(inp_h / ori_h, inp_w / ori_w)
new_h, new_w = ori_h * scale, ori_w * scale
bias_x, bias_y = (inp_w - new_w) / 2., (inp_h - new_h) / 2.
src = np.array([[0, 0], [ori_w, 0], [0, ori_h]], np.float32)
dst = np.array([[bias_x, bias_y], [new_w + bias_x, bias_y],
[bias_x, new_h + bias_y]], np.float32)
mat = cv2.getAffineTransform(src, dst)
if inverse:
mat_inv = cv2.getAffineTransform(dst, src)
return mat, mat_inv
return mat, None
def convert(self, img, mask=None):
# Image ToTensor & Normalize
img = torch.from_numpy(img.transpose((2, 0, 1)))
if not isinstance(img, torch.FloatTensor):
img = img.float()
img.div_(255.).sub_(self.mean).div_(self.std)
# Mask ToTensor
if mask is not None:
mask = torch.from_numpy(mask)
if not isinstance(mask, torch.FloatTensor):
mask = mask.float()
return img, mask
def __repr__(self):
return self.__class__.__name__ + "(" + \
f"db_path={self.lmdb_dir}, " + \
f"dataset={self.dataset}, " + \
f"split={self.split}, " + \
f"mode={self.mode}, " + \
f"input_size={self.input_size}, " + \
f"word_length={self.word_length}"
def get_target_noun(self, sent, doc) :
get_nouns = [token.text for i, token in enumerate(doc) if token.tag_ in ['NN', 'NNS', 'NNP', 'NNPS'] and token.dep_ not in ['amod','advmod', 'nummod', 'quantmod'] and token.text not in [".", ',', ' ']]
# get target noun
target_noun = ""
for i, token in enumerate(doc) :
if token.dep_ == 'ROOT' and token.tag_ in ['NN', 'NNS', 'NNP', 'NNPS'] :
target_noun = token.text
break
elif token.tag_ in ['NN', 'NNS', 'NNP', 'NNPS'] and token.dep_ in ['nsubj', 'nsubjpass', 'attr' ,'dep'] :
target_noun = token.text
break
if not target_noun:
for token in doc:
if token.pos_ in ['NOUN', 'PROPN'] and token.dep_ == 'compound':
target_noun = token.text
break
elif token.dep_ == 'ROOT' and token.pos_ == 'VERB':
if len(get_nouns) == 1:
target_noun = get_nouns[0]
else:
target_noun = token.text
break
if not target_noun :
for token in doc:
if token.tag_ in ['NN', 'NNS', 'NNP', 'NNPS'] and token.dep_ in ['pobj'] :
target_matnoun = token.text
break
if not target_noun and len(get_nouns) == 1:
target_noun = get_nouns[0]
return target_noun