-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathdecimater.cpp
253 lines (227 loc) · 9.79 KB
/
decimater.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#include "igl/readOBJ.h"
#include "igl/writeOBJ.h"
// #include "igl/decimate.h"
#include <Eigen/Core>
#include "pythonlike.h"
#include <cstdlib> // exit()
#include <iostream>
#include <cassert>
#include <cstdio> // printf()
#include <igl/seam_edges.h>
#include "decimate.h"
#include "quadric_error_metric.h"
#include <igl/writeDMAT.h>
// An anonymous namespace. This hides these symbols from other modules.
namespace {
void usage( const char* argv0 )
{
std::cerr << "Usage: " << argv0 << " <path/to/input.obj> num-vertices <target_number_of_vertices> [--strict] [<strictness>]" << std::endl;
std::cerr << "Usage: " << argv0 << " <path/to/input.obj> percent-vertices <target_percent_of_vertices> [--strict] [<strictness>]" << std::endl;
exit(-1);
}
int count_seam_edge_num(const EdgeMap& seam_vertex_edges)
{
int count = 0;
for(auto & v : seam_vertex_edges) {
count += v.second.size();
}
return count / 2;
}
enum SeamAwareDegree
{
NoUVShapePreserving,
UVShapePreserving,
Seamless
};
/*
Decimates a triangle mesh down to a target number of vertices,
preserving the UV parameterization.
TODO Q: Should we do a version that does not preserve the UV parameterization exactly,
but instead returns a sequence of TC/FTC that can be used to transform a UV
point between the parameterizations of the decimated and undecimated mesh?
Input parameters:
V: The 3D positions of the input mesh (3 columns)
TC: The 2D texture coordinates of the input mesh (2 columns)
F: Indices into `V` for the three vertices of each triangle.
FTC: Indices into `TC` for the three vertices of each triangle.
Output parameters:
Vout: The 3D positions of the decimated mesh (3 columns),
where #vertices is as close as possible to `target_num_vertices`)
TCout: The texture coordinates of the decimated mesh (2 columns)
Fout: Indices into `Vout` for the three vertices of each triangle.
FTCout: Indices into `TCout` for the three vertices of each triangle.
Returns:
True if the routine succeeded, false if an error occurred.
Notes:
The output mesh will a vertex count as close as possible to `target_num_vertices`.
The decimated mesh should never have fewer vertices than `target_num_vertices`.
*/
template <typename DerivedV, typename DerivedF, typename DerivedT>
bool decimate_down_to(
const Eigen::PlainObjectBase<DerivedV>& V,
const Eigen::PlainObjectBase<DerivedF>& F,
const Eigen::PlainObjectBase<DerivedT>& TC,
const Eigen::PlainObjectBase<DerivedF>& FT,
int target_num_vertices,
Eigen::MatrixXd& V_out,
Eigen::MatrixXi& F_out,
Eigen::MatrixXd& TC_out,
Eigen::MatrixXi& FT_out,
int seam_aware_degree
)
{
#define DEBUG_DECIMATE_DOWN_TO
assert( target_num_vertices > 0 );
assert( target_num_vertices < V.rows() );
/// 3D triangle mesh with UVs.
// 3D
assert( V.cols() == 3 );
// triangle mesh
assert( F.cols() == 3 );
// UVs
assert( TC.cols() == 2 );
assert( FT.cols() == 3 );
assert( FT.cols() == F.cols() );
// Print information about seams.
Eigen::MatrixXi seams, boundaries, foldovers;
igl::seam_edges( V, TC, F, FT, seams, boundaries, foldovers );
#ifdef DEBUG_DECIMATE_DOWN_TO
std::cout << "seams: " << seams.rows() << "\n";
std::cout << seams << std::endl;
std::cout << "boundaries: " << boundaries.rows() << "\n";
std::cout << boundaries << std::endl;
std::cout << "foldovers: " << foldovers.rows() << "\n";
std::cout << foldovers << std::endl;
#endif
// Collect all vertex indices involved in seams.
std::unordered_set< int > seam_vertex_indices;
// Also collect the edges in terms of position vertex indices themselves.
EdgeMap seam_vertex_edges;
{
for( int i = 0; i < seams.rows(); ++i ) {
const int v1 = F( seams( i, 0 ), seams( i, 1 ) );
const int v2 = F( seams( i, 0 ), ( seams( i, 1 ) + 1 ) % 3 );
seam_vertex_indices.insert( v1 );
seam_vertex_indices.insert( v2 );
insert_edge( seam_vertex_edges, v1, v2 );
// The vertices on both sides should match:
assert( seam_vertex_indices.count( F( seams( i, 2 ), seams( i, 3 ) ) ) );
assert( seam_vertex_indices.count( F( seams( i, 2 ), ( seams( i, 3 ) + 1 ) % 3 ) ) );
}
for( int i = 0; i < boundaries.rows(); ++i ) {
const int v1 = F( boundaries( i, 0 ), boundaries( i, 1 ) );
const int v2 = F( boundaries( i, 0 ), ( boundaries( i, 1 ) + 1 ) % 3 );
seam_vertex_indices.insert( v1 );
seam_vertex_indices.insert( v2 );
insert_edge( seam_vertex_edges, v1, v2 );
}
for( int i = 0; i < foldovers.rows(); ++i ) {
const int v1 = F( foldovers( i, 0 ), foldovers( i, 1 ) );
const int v2 = F( foldovers( i, 0 ), ( foldovers( i, 1 ) + 1 ) % 3 );
seam_vertex_indices.insert( v1 );
seam_vertex_indices.insert( v2 );
insert_edge( seam_vertex_edges, v1, v2 );
// The vertices on both sides should match:
assert( seam_vertex_indices.count( F( foldovers( i, 2 ), foldovers( i, 3 ) ) ) );
assert( seam_vertex_indices.count( F( foldovers( i, 2 ), ( foldovers( i, 3 ) + 1 ) % 3 ) ) );
}
std::cout << "# seam vertices: " << seam_vertex_indices.size() << std::endl;
std::cout << "# seam edges: " << count_seam_edge_num(seam_vertex_edges) << std::endl;
}
// Compute the per-vertex quadric error metric.
std::vector< Eigen::MatrixXd > Q;
bool success = false;
Eigen::VectorXi J;
MapV5d hash_Q;
half_edge_qslim_5d(V,F,TC,FT,hash_Q);
std::cout << "computing initial metrics finished\n" << std::endl;
success = decimate_halfedge_5d(
V, F,
TC, FT,
seam_vertex_edges,
hash_Q,
target_num_vertices,
seam_aware_degree,
V_out, F_out,
TC_out, FT_out
);
std::cout << "#seams after decimation: " << count_seam_edge_num(seam_vertex_edges) << std::endl;
std::cout << "#interior foldeover: " << interior_foldovers.size() << std::endl;
std::cout << "#exterior foldeover: " << exterior_foldovers.size() << std::endl;
return success;
}
}
int main( int argc, char* argv[] ) {
std::vector<std::string> args( argv + 1, argv + argc );
std::string strictness;
int seam_aware_degree = int( SeamAwareDegree::Seamless );
const bool found_strictness = pythonlike::get_optional_parameter( args, "--strict", strictness );
if ( found_strictness ) {
seam_aware_degree = atoi(strictness.c_str());
}
if( args.size() != 3 && args.size() != 4 ) usage( argv[0] );
std::string input_path, command, command_parameter;
pythonlike::unpack( args.begin(), input_path, command, command_parameter );
args.erase( args.begin(), args.begin() + 3 );
// Does the input path exist?
Eigen::MatrixXd V, TC, CN;
Eigen::MatrixXi F, FT, FN;
if( !igl::readOBJ( input_path, V, TC, CN, F, FT, FN ) ) {
std::cerr << "ERROR: Could not read OBJ: " << input_path << std::endl;
usage( argv[0] );
}
std::cout << "Loaded a mesh with " << V.rows() << " vertices and " << F.rows() << " faces: " << input_path << std::endl;
// Get the target number of vertices.
int target_num_vertices = 0;
if( command == "num-vertices" ) {
// strto<> returns 0 upon failure, which is fine, since that is invalid input for us.
target_num_vertices = pythonlike::strto< int >( command_parameter );
}
else if( command == "percent-vertices" ) {
const double percent = pythonlike::strto< double >( command_parameter );
target_num_vertices = lround( ( percent * V.rows() )/100. );
std::cout << command_parameter << "% of " << std::to_string( V.rows() ) << " input vertices is " << std::to_string( target_num_vertices ) << " output vertices." << std::endl;
// Ugh, printf() requires me to specify the types of integers versus longs.
// printf( "%.2f%% of %d input vertices is %d output vertices.", percent, V.rows(), target_num_vertices );
}
else {
std::cerr << "ERROR: Unknown command: " << command << std::endl;
usage( argv[0] );
}
// Check that the target number of vertices is positive and fewer than the input number of vertices.
if( target_num_vertices <= 0 ) {
std::cerr << "ERROR: Target number of vertices must be a positive integer: " << argv[4] << std::endl;
usage( argv[0] );
}
if( target_num_vertices >= V.rows() ) {
std::string output_path = pythonlike::os_path_splitext( input_path ).first + "-decimated_to_" + std::to_string( V.rows() ) + "_vertices.obj";
if( !igl::writeOBJ( output_path, V, F, CN, FN, TC, FT ) ) {
std::cerr << "ERROR: Could not write OBJ: " << output_path << std::endl;
usage( argv[0] );
}
std::cout << "Wrote: " << output_path << std::endl;
std::cerr << "ERROR: Target number of vertices must be smaller than the input number of vertices: " << argv[4] << std::endl;
return 0;
}
// Make the default output path.
std::string output_path = pythonlike::os_path_splitext( input_path ).first + "-decimated_to_" + std::to_string( target_num_vertices ) + "_vertices.obj";
if( !args.empty() ) {
output_path = args.front();
args.erase( args.begin() );
}
// We should have consumed all arguments.
if( !args.empty() ) usage( argv[0] );
// Decimate!
Eigen::MatrixXd V_out, TC_out, CN_out;
Eigen::MatrixXi F_out, FT_out, FN_out;
const bool success = decimate_down_to( V, F, TC, FT, target_num_vertices, V_out, F_out, TC_out, FT_out, seam_aware_degree );
if( !success ) {
std::cerr << "WARNING: decimate_down_to() returned false (target number of vertices may have been unachievable)." << std::endl;
}
if( !igl::writeOBJ( output_path, V_out, F_out, CN_out, FN_out, TC_out, FT_out ) ) {
std::cerr << "ERROR: Could not write OBJ: " << output_path << std::endl;
usage( argv[0] );
}
std::cout << "Wrote: " << output_path << std::endl;
return 0;
}