-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_custom_image.py
124 lines (103 loc) · 3.79 KB
/
test_custom_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import math
import argparse, yaml
import utils
import os
from tqdm import tqdm
from torchvision import utils as vutils
import imageio
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import MultiStepLR, StepLR
from datas.utils import create_datasets
from multiprocessing import Process
from multiprocessing import Queue
import time
import os
from utils import ndarray2tensor
class save_img():
def __init__(self):
self.n_processes = 32
def begin_background(self):
self.queue = Queue()
def bg_target(queue):
while True:
if not queue.empty():
filename, tensor = queue.get()
if filename is None: break
imageio.imwrite(filename, tensor.numpy())
self.process = [
Process(target=bg_target, args=(self.queue,)) \
for _ in range(self.n_processes)
]
for p in self.process: p.start()
def end_background(self):
for _ in range(self.n_processes): self.queue.put((None, None))
while not self.queue.empty(): time.sleep(1)
for p in self.process: p.join()
def save_results(self, filename, img):
tensor_cpu = img[0].byte().permute(1, 2, 0).cpu()
self.queue.put((filename, tensor_cpu))
parser = argparse.ArgumentParser(description='config')
parser.add_argument('--config', type=str, default=None, help='pre-config file for training')
parser.add_argument('--resume', type=str, default=None, help='resume training or not')
parser.add_argument('--custom', type=str, default=None, help='use custom block')
parser.add_argument('--cloudlog', type=str, default=None, help='use cloudlog')
parser.add_argument('--custom_image_path', type=str, default=None, help='path of the custom image')
device = None
args = parser.parse_args()
if args.config:
opt = vars(args)
yaml_args = yaml.load(open(args.config), Loader=yaml.FullLoader)
opt.update(yaml_args)
## set visibel gpu
gpu_ids_str = str(args.gpu_ids).replace('[', '').replace(']', '')
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '{}'.format(gpu_ids_str)
## select active gpu devices
device = None
if len(args.gpu_ids) > 0 and torch.cuda.is_available():
print('use cuda & cudnn for acceleration!')
print('the gpu id is: {}'.format(args.gpu_ids))
device = torch.device('cuda')
torch.backends.cudnn.benchmark = True
else:
print('use cpu for training!')
device = torch.device('cpu')
# torch.set_num_threads(args.threads)
## definitions of model
try:
model = utils.import_module('models.{}_network'.format(args.model)).create_model(args)
except Exception:
raise ValueError('not supported model type! or something')
if args.fp == 16:
model.half()
## load pretrain
if args.pretrain is not None:
print('load pretrained model: {}!'.format(args.pretrain))
ckpt = torch.load(args.pretrain, map_location=device)
model.load(ckpt['model_state_dict'])
model = nn.DataParallel(model).to(device)
model = model.eval()
torch.set_grad_enabled(False)
save_path = args.log_path
si = save_img()
si.begin_background()
filePath = args.custom_image_path
for filename in tqdm(os.listdir(filePath), ncols=80):
lr = imageio.imread(filePath + os.sep + filename)
lr = ndarray2tensor(lr)
lr = torch.unsqueeze(lr, 0)
if args.fp == 16:
lr = lr.type(torch.HalfTensor)
lr = lr.to(device)
sr = model(lr)
# quantize output to [0, 255]
sr = sr.clamp(0, 255).round()
path = save_path + os.sep + 'custom' + os.sep
if not os.path.exists(path):
os.makedirs(path)
fileUname, ext = '.'.join(filename.split('.')[:-1]), filename.split('.')[-1]
path += (fileUname + '_x' + str(args.scale) + '_SR' + '.' + ext)
si.save_results(path, sr)
si.end_background()