forked from da-conde/bop_streamlit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHome.py
124 lines (89 loc) · 10.5 KB
/
Home.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import streamlit as st
from PIL import Image
from streamlit_pandas_profiling import st_profile_report
#from ydata_profiling import ProfileReport
#import matplotlib.pyplot as plt
import numpy as np
#import base64
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
from pygwalker.api.streamlit import StreamlitRenderer, init_streamlit_comm
from bs4 import BeautifulSoup
#import pybase64
from functions import scraping_refubium
from functions import scraping_deposit
from functions import scraping_edoc
from functions import scraping_tu_repo
from functions import csv
from functions import excel
from functions import txt
from functions import pdf
#st.set_option('deprecation.showPyplotGlobalUse', False)
image = Image.open('bua.jpeg')
st.image(image)
st.title('Berlin Open Science Platform')
st.divider()
col1, col2, col3 = st.columns(3)
with col1:
st.image("", caption="DepositOnce")
with col2:
st.image("https://www.hu-berlin.de/@@site-logo/og_logo.png", caption="Edoc")
with col3:
st.image("https://www.wuv.de/var/wuv/storage/images/werben-verkaufen/themen/tech/kreation-mit-ki-zoff-um-neues-logo-der-fu-berlin/10458335-2-ger-DE/Kreation-mit-KI-Zoff-um-neues-Logo-der-FU-Berlin3_reference.jpg", caption="Refubium")
URL = st.text_input('Link', value="...")
check_refubium = URL[8:16]
check_refubium = 'refubium'
check_depositonce = 'depositonce'
check_edoc = 'edoc'
check_tu = "tu.berlin"
if check_refubium in URL.lower():
files = scraping_refubium(URL)
file_section = st.selectbox(
'Choose File',
files.Titel.unique(),index=None)
file_selected = files.loc[files['Titel'] == file_section]
if file_section != None:
hyperlink = file_selected["Link"].item()
datentyp = file_selected["Format"].item()
if datentyp != None:
st.subheader(datentyp + " "+ "Analysis")
if datentyp == "xlsx" or datentyp == "xls":
excel(hyperlink)
if datentyp == "pdf":
pdf(hyperlink)
if datentyp == "txt":
txt(hyperlink)
elif datentyp == "mp4":
video(hyperlink)
elif datentyp == "txt":
txt(hyperlink)
elif check_depositonce in URL.lower():
st.write("Depositonce")
files_deposit_once = scraping_deposit(URL)
file_section_deposit_one = st.selectbox(
'Choose File',
files_deposit_once.Titel.unique(),index=None)
file_selected = files_deposit_once.loc[files_deposit_once['Titel'] == file_section_deposit_one]
if file_section_deposit_one != None:
hyperlink = file_selected["Link"].item()
datentyp = file_selected["Format"].item()
#st.write(hyperlink)
if datentyp != None:
st.subheader(datentyp + " "+ "Analysis")
#Depositonce
if datentyp == "pdf":
pdf(hyperlink)
elif datentyp == "csv":
csv(hyperlink)
elif datentyp == "txt":
txt(hyperlink)
elif datentyp == "mp4":
video(hyperlink)
elif datentyp == "xlsx" or datentyp == "xls":
excel(hyperlink)
else:
st.write("Für den Datentyp" + " " + datentyp + " " + "steht noch keine Analyse zur Verfügung")