diff --git a/tutorials/notebooks/imx500_notebooks/keras/example_keras_effdet_lite0_for_imx500.ipynb b/tutorials/notebooks/imx500_notebooks/keras/example_keras_effdet_lite0_for_imx500.ipynb index a1b5f0369..df0a1c6c0 100644 --- a/tutorials/notebooks/imx500_notebooks/keras/example_keras_effdet_lite0_for_imx500.ipynb +++ b/tutorials/notebooks/imx500_notebooks/keras/example_keras_effdet_lite0_for_imx500.ipynb @@ -7,7 +7,7 @@ "\n", "[Run this tutorial in Google Colab](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_effdet_lite0_for_imx500.ipynb)\n", "\n", - "## Overview\n", + "## Overview \n", "\n", "In this notebook, we'll demonstrate the post-training quantization using MCT for a pre-trained object detection model in Keras. In addition, we'll integrate a post-processing custom layer from [sony-custom-layers](https://github.com/sony/custom_layers) into the model. This custom layer is supported by the imx500 target platform capabilities.\n", "\n", @@ -351,6 +351,8 @@ "execution_count": null, "outputs": [], "source": [ + "import model_compression_toolkit as mct\n", + "\n", "loader, _ = get_coco_dataloader(split='val', config=config)\n", "\n", "\n",