-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
76 lines (54 loc) · 3.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from network import *
from module import *
class Graph:
def __init__(self):
self.graph = tf.Graph()
with self.graph.as_default():
self.mixture = tf.placeholder(tf.float32, [None, hp.frequency, hp.timestep, hp.num_channel], name='mixture')
self.true_vocal = tf.placeholder(tf.float32, [None, hp.frequency, hp.timestep, hp.num_channel], name='true_vocal')
gen, fake_D, real_D = network(self.mixture, self.true_vocal)
self.wgan_loss = -tf.reduce_mean(real_D) + tf.reduce_mean(fake_D)
self.gen_loss = -tf.reduce_mean(fake_D)
self.l1_loss = tf.reduce_mean(tf.abs(self.true_vocal - gen))
disc_op = tf.train.AdamOptimizer(learning_rate=0.0001)
gen_op = tf.train.AdamOptimizer(learning_rate=0.0001)
gen_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="network/generator")
disc_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="network/discriminator")
disc_grad = disc_op.compute_gradients(self.wgan_loss, disc_variables)
gen_grad = gen_op.compute_gradients(self.gen_loss + self.l1_loss, gen_variables)
self.update_D = disc_op.apply_gradients(disc_grad)
self.update_G = gen_op.apply_gradients(gen_grad)
self.clip_D = [var.assign(tf.clip_by_value(var, -0.01, 0.01))for var in disc_variables]
tf.summary.scalar("generator_loss", self.gen_loss+self.l1_loss)
tf.summary.scalar("discriminator_loss", self.wgan_loss)
tf.summary.image("true_mixture", self.mixture)
tf.summary.image("true_vocal", self.true_vocal)
tf.summary.image("generated_vocal", gen)
self.merged = tf.summary.merge_all()
def main():
mixture = np.load(hp.mixture_data)
vocals = np.load(hp.vocal_data)
num_batch = len(mixture) // hp.batch_size
g = Graph()
global_step = 0
with g.graph.as_default():
saver = tf.train.Saver()
with tf.Session() as sess:
train_writer = tf.summary.FileWriter(hp.save_dir + '/train',
sess.graph)
init = tf.global_variables_initializer()
sess.run(init)
for epoch in xrange(hp.num_epochs):
mixture, vocals = dataset_shuffling(mixture, vocals)
for i in range(num_batch):
batch_mixture, batch_vocal = get_batch(mixture, vocals, i, hp.batch_size)
sess.run([g.update_D, g.clip_D], feed_dict={g.mixture:batch_mixture, g.true_vocal:batch_vocal})
sess.run(g.update_G, feed_dict={g.mixture:batch_mixture, g.true_vocal:batch_vocal})
global_step += 1
if global_step % 100 == 0:
disc_loss, gen_loss, l1_loss, summary = sess.run([g.wgan_loss, g.gen_loss, g.l1_loss, g.merged], feed_dict={g.mixture: batch_mixture, g.true_vocal: batch_vocal})
print "step %d, disc_loss:%.4f, gen_loss:%.4f, l1_loss:%.4f" %(i,disc_loss, gen_loss, l1_loss)
saver.save(sess, hp.save_dir+"/model_%d.ckpt" % (global_step))
train_writer.add_summary(summary, global_step)
if __name__ == '__main__':
main()