-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathzfgen.py
118 lines (111 loc) · 3.99 KB
/
zfgen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
axioms = {
'ax-1': '( ph -> ( ps -> ph ) )',
'ax-2': '( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )',
'ax-3': '( ( -. ph -> -. ps ) -> ( ps -> ph ) )',
'ax-mp': {
'e': ['ph', '( ph -> ps )'],
'a': 'ps',
},
'ax-4': '( A. x ph -> ph )',
'ax-5': '( A. x ( ph -> ps ) -> ( A. x ph -> A. x ps ) )',
'ax-6': '( -. A. x ph -> A. x -. A. x ph )',
'ax-7': '( A. x A. y ph -> A. y A. x ph )',
'ax-gen': {
'e': ['ph'],
'a': 'A. x ph',
},
'ax-8': '( x = y -> ( x = z -> y = z ) )',
'ax-9': '-. A. x -. x = y',
'ax-10': '( A. x x = y -> A. y y = x )',
'ax-11': '( x = y -> ( A. y ph -> A. x ( x = y -> ph ) ) )',
'ax-12o': '( -. A. z z = x -> ( -. A. z z = y -> ( x = y -> A. z x = y ) ) )',
'ax-13': '( x = y -> ( x e. z -> y e. z ) )',
'ax-14': '( x = y -> ( z e. x -> z e. y ) )',
'ax-15': '( -. A. z z = x -> ( -. A. z z = y -> ( x e. y -> A. z x e. y ) ) )',
'ax-16': {
'd': 'x y',
'a': '( A. x x = y -> ( ph -> A. x ph ) )',
},
'ax-ext': {
'd': 'x y z',
'a': '( A. z ( z e. x <-> z e. y ) -> x = y )',
},
'ax-rep': {
'd': 'x y z w',
'a': r'( A. w E. y A. z ( A. y ph -> z = y ) -> E. y A. z ( z e. y <-> E. w ( w e. x /\ A. y ph ) ) )',
},
'ax-pow': {
'd': 'x y z w',
'a': 'E. y A. z ( A. w ( w e. z -> w e. x ) -> z e. y )',
},
'ax-un': {
'd': 'x y z w',
'a': r'E. y A. z ( E. w ( z e. w /\ w e. x ) -> z e. y )',
},
'ax-inf2': {
'd': 'x y z w',
'a': r'E. x ( E. y ( y e. x /\ A. z -. z e. y ) /\ A. y ( y e. x -> E. z ( z e. x /\ A. w ( w e. z <-> ( w e. y \/ w = y ) ) ) ) )',
},
}
# let's target a random higher set theory result, gchac:
# this is edited from "SHOW TRACE_BACK .../mat ax-*/ax" output
derivable = {
'gchac': 'ax-1 ax-2 ax-3 ax-mp ax-5 ax-6 ax-7 ax-gen ax-8 ax-11 ax-13 ax-14 ax-17 ax-12o ax-10 ax-9 ax-4 ax-16 ax-ext ax-rep ax-sep ax-nul ax-pow ax-pr ax-un ax-inf2',
'ax-pr': 'ax-1 ax-2 ax-3 ax-mp ax-5 ax-6 ax-7 ax-gen ax-8 ax-11 ax-14 ax-17 ax-12o ax-10 ax-9 ax-4 ax-16 ax-ext ax-rep ax-sep ax-nul ax-pow', # axpr
'ax-17': 'hbim hbn hbal ax17eq ax17el', # metatheorem
'hbal': 'ax-1 ax-2 ax-mp ax-5 ax-7 ax-gen',
'hbn': 'ax-1 ax-2 ax-3 ax-mp ax-5 ax-6 ax-gen ax-4',
'hbim': 'ax-1 ax-2 ax-3 ax-mp ax-5 ax-6 ax-gen ax-4',
'ax17eq': 'ax-1 ax-2 ax-3 ax-mp ax-12o ax-16',
'ax17el': 'ax-1 ax-2 ax-3 ax-mp ax-16 ax-15',
'ax-sep': 'ax-1 ax-2 ax-3 ax-mp ax-5 ax-6 ax-7 ax-gen ax-8 ax-13 ax-14 ax-17 ax-9 ax-4 ax-rep', # axsep
'ax-nul': 'ax-1 ax-2 ax-3 ax-mp ax-5 ax-gen ax-sep', # axnul
}
# ax-4, ax-10, ax-11, ax-12o are proven redundant in systems that include ax-17
derived = set()
def assert_derivable(name):
if name in derived or name in axioms:
return
if name not in derivable:
raise RuntimeError(name + ' not axiom or derivable')
for hypot in derivable[name].split(' '):
assert_derivable(hypot)
derived.add(name)
assert_derivable('gchac')
rules = {
'WFF': {
'wph': 'ph',
'wps': 'ps',
'wch': 'ch',
'weq': 'SET = SET',
'wel': 'SET e. SET',
'wi': '( WFF -> WFF )',
'wn': '-. WFF',
'wo': r'( WFF \/ WFF )',
'wa': r'( WFF /\ WFF )',
'wb': '( WFF <-> WFF )',
'wal': 'A. SET WFF',
'wex': 'E. SET WFF',
},
'SET': {
'vx': 'x',
'vy': 'y',
'vz': 'z',
'vw': 'w',
}
}
def parse_wff(string):
tokens = string.split(' ')
packrat = {}
def cached(cat, index):
if (cat, index) not in packrat:
packrat[(cat, index)] = recurse(cat, index)
return packrat[(cat, index)]
def recurse(cat, index):
for rule, rulestr in rules[cat].items():
cursor = index
for token in rulestr.split(' '):
if token in rules:
subparse = cached(token, cursor)
...
else: