-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackend.py
262 lines (141 loc) · 6.66 KB
/
backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import preprocess
import pandas as pd
from urlextract import URLExtract
import re
import emoji
extract = URLExtract()
# List of users
def list_of_members(df):
user_list = df['user'].unique().tolist()
#sorting usernames in user_list
user_list.sort()
#Insert Overall for group analysis
user_list.insert(0,"Overall Group")
#List to df
temp_df=pd.DataFrame(user_list,columns=['username'])
return temp_df
#Top-Active-Members (Most no of msg to least)
def top_active_members(df):
x=df['user'].value_counts() #this will counts no of times a row of particular username from repeated in the data frame
df = x.reset_index().rename(columns={'index':'User','user':'Message'})
return df
#Fetch-Stat
def fetch_stat(selected_user,df):
if selected_user != 'Overall Group':
df = df[df['user'] == selected_user] #masking dataframe to have only selected_user data
#if selected_user is "overall" then no changes in dataframe
#1.fetching no of messages
num_messages = df.shape[0]
#2.fetching number of words
words = [] #createing a list for storing individual messages
for message in df['message']:
words.extend(message.split()) #spliting messages to words and extend the list
#3.feching no of media sent
media = df[df['message']=='<Media omitted>\n'].shape[0]
#4.fetching no of links
links = [] #list to store links
for message in df['message']:
links.extend(extract.find_urls(message))
return num_messages,len(words),media,len(links) #len return length of list(i.e) number of elements in the list
#Overall Activity of Selected User OR OverAll Group
def overall_activity_data(selected_user,df):
if selected_user != 'Overall Group':
df = df[df['user'] == selected_user]
df=df.drop(columns={'user','message','month','hour','minute','dayname'}) #droping unnecassary columns
df = preprocess.activity_over_period(df) #calling function to retrun final dataframe
return df #retruns dataframe
#Percentage of chats per user
def percentage_of_chats(df):
#Return Percentages with index and users columns as default column names where index has username and user has percentage of respective users
y=(df['user'].value_counts()/df.shape[0])*100
# converting y to data frame and renaming the columns
df=y.reset_index().rename(columns = {'index':'User','user':'Percentage'})
#Roundig to 2 position
df.Percentage=df.Percentage.round(2)
return df
#Number of messages per month
def monthly_messages(selected_user,df):
if selected_user != 'Overall Group':
df = df[df['user'] == selected_user]
dfmonth=df['month']
dfmonth=dfmonth.reset_index()
dfmonth.drop(columns={'index'},inplace=True)
dfmonth=dfmonth['month'].value_counts()
dfmonth=dfmonth.reset_index()
dfmonth.rename(columns={'index':'month','month':0},inplace=True)
m_order = ['January', 'February', 'March', 'April', 'May', 'June','July','August','September','October','November','December']
dfmonth['month'] = pd.Categorical(dfmonth['month'], categories=m_order, ordered=True)
dfmonth = dfmonth.sort_values('month')
dfmonth.rename(columns={'month':'Month',0:'Message'},inplace=True)
return dfmonth
#Number of messages per week
def weekly_messages(selected_user,df):
if selected_user != 'Overall Group':
df = df[df['user'] == selected_user]
dfweek = df['dayname']
dfweek=dfweek.reset_index()
dfweek.drop(columns={'index'},inplace=True)
dfweek=dfweek['dayname'].value_counts()
dfweek=dfweek.reset_index()
dfweek.rename(columns={'index':'Day','dayname':'Message'},inplace=True)
day_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday','Sunday']
dfweek['Day'] = pd.Categorical(dfweek['Day'], categories=day_order, ordered=True)
dfweek = dfweek.sort_values('Day')
return dfweek
#Number of message sent by hour
def daily_messages(selected_user,df):
if selected_user != 'Overall Group':
df = df[df['user'] == selected_user]
dftime = df['hour']
dftime=dftime.reset_index()
dftime=dftime['hour'].value_counts()
dftime=dftime.reset_index()
dftime.rename(columns={'index':'Hour','hour':'Message'},inplace=True)
dftime=dftime.sort_values(by='Hour')
return dftime
#Number of media shared by user
def media_shared_per_user(df):
df = df[df['message']=='<Media omitted>\n']
df=df['user'].value_counts().reset_index()
df.rename(columns={'index':'User','user':'Media'},inplace=True)
return df
#Number of emoji shared by user
def emoji_shared_per_user(df):
df.drop(columns={'year','month','day','hour','minute','dayname','month_num'},inplace=True)
df["Emoticons"]=df["message"].apply(lambda x:re.findall(r'[\U0001f600-\U0001f650]', x))
df["Emoticons_count"]=df["message"].apply(lambda x:len(re.findall(r'[\U0001f600-\U0001f650]', x)))
emoji=df.groupby(["user"])["Emoticons_count"].sum().sort_values(ascending=False)
emoji=emoji.reset_index()
emoji.rename(columns={'user':'User','Emoticons_count':'Emoji'},inplace=True)
return emoji
#The late night chat data
def late_night_chats(df):
df=df.loc[(df['hour']>22) | (df['hour']<4)]
df=df['user'].value_counts()
df=df.reset_index()
df.rename(columns={'index':'User','user':'Messages'},inplace=True)
return df
#The early morning chat data
def early_morning_chats(df):
df=df.loc[(df['hour']>3) & (df['hour']<7)]
df=df['user'].value_counts()
df=df.reset_index()
df.rename(columns={'index':'User','user':'Messages'},inplace=True)
return df
#Most Shared Emojis
def most_shared_emoji(selected_user,df):
if selected_user != 'Overall Group':
df = df[df['user'] == selected_user]
emojis=[]
for message in df['message']:
emojis.extend([c for c in message if emoji.emoji_list(c)])
s=len(emojis)
if s>0:
df2 = pd.DataFrame(emojis)
df2.rename(columns={0:'Emoji'},inplace=True)
df2 = df2.value_counts().reset_index()
df2.rename(columns={0:'Sent'},inplace=True)
return df2
else:
df2 = pd.DataFrame(columns=['204', 'No Content'])
return df2