-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathislands.go
277 lines (249 loc) · 7.32 KB
/
islands.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
package genetic
import (
"context"
"fmt"
"math"
"math/rand"
"sync"
"github.com/soypat/mu8"
)
// Islands Model Genetic Algorithm (IMGA) is a multi-population based GA.
// IMGA aimed to avoid local optimum by maintaining population (island) diversity using migration.
type Islands[G mu8.Genome] struct {
islands []island[G]
rng rand.Rand
// Migration Window, a buffer to keep best individual from each island.
mw []migrant[G]
}
type migrant[G mu8.Genome] struct {
ind G
origin int
}
// NewIslands simulates multiple populations which interchange
// selected migrants (preferring higher fitness scores). The advantage
// of Islands over just several Populations is that it provides readily
// available multi-core execution of the genetic algorithm and whose final
// result is the local optimum of all populations.
func NewIslands[G mu8.Genome](Nislands int, individuals []G, src rand.Source, newIndividual func() G) Islands[G] {
if Nislands <= 1 {
panic("need at least 2 islands")
} else if len(individuals) < Nislands {
panic("must be more individuals than islands for scheme to work")
}
rng := rand.New(src)
populations := make([][]G, Nislands)
// Set a max individual count per island so as to evenly distribute individuals.
maxIndividuals := 1 + len(individuals)/Nislands
for i := 0; i < len(individuals); {
// Distribute individuals randomly across islands
finalDest := rng.Intn(Nislands)
if len(populations[finalDest]) < maxIndividuals {
populations[finalDest] = append(populations[finalDest], individuals[i])
i++
} else if len(individuals)/(i+1) <= 2 {
// If random append unsuccessful, append to first available island.
for j := range populations {
if len(populations[j]) < maxIndividuals {
populations[j] = append(populations[j], individuals[i])
i++
break
}
}
}
}
islands := make([]island[G], Nislands)
for i := range islands {
islands[i] = newIsland(populations[i], rand.NewSource(src.Int63()), newIndividual)
}
return Islands[G]{
islands: islands,
mw: make([]migrant[G], len(islands)),
rng: *rand.New(src),
}
}
func (is Islands[G]) Populations() []Population[G] {
pops := make([]Population[G], len(is.islands))
for i := range is.islands {
pops[i] = is.islands[i].Population
}
return pops
}
func newIsland[G mu8.Genome](individuals []G, src rand.Source, newIndividual func() G) island[G] {
return island[G]{
prevFitness: make([]float64, len(individuals)),
Population: NewPopulation(individuals, src, newIndividual),
}
}
type island[G mu8.Genome] struct {
Population[G]
prevFitness []float64
attr float64
}
// receiveMigrant replaces individual with zero or minimum
// fitness with the migrant
func (is *island[G]) receiveMigrant(migrant G) {
minidx := -1
minFitness := is.fitness[0] + 1
for i := 0; i < len(is.fitness); i++ {
fitness := is.fitness[i]
if fitness == 0 {
minidx = i
break
} else if fitness < minFitness {
minidx = i
minFitness = fitness
}
}
mu8.Clone(is.individuals[minidx], migrant)
}
func (is *island[G]) Individuals() []G {
return is.individuals
}
// Advance starts Nconcurrent+1 goroutines which run the genetic
// algorithm on each island. After Ngen generations elapse on each island
// the champions of each island are selected for migration and interchange places
// with other island champions. Crossover must be called to fulfill the migration.
func (is *Islands[G]) Advance(ctx context.Context, mutationRate float64, polygamy, Ngen, Nconcurrent int) error {
I := len(is.islands)
switch {
case Nconcurrent <= 0:
panic("concurrency must be greater than 0")
case Ngen <= 0:
panic("number of generations must be greater or equal to 1")
case Nconcurrent > I:
panic("cannot have more goroutines than number of islands.")
case Ngen <= 1:
panic("number of generations between crossovers should be greater than 0 and it is HIGHLY recommended it is above 1")
case ctx.Err() != nil:
return ctx.Err()
}
ctx, cancel := context.WithCancel(ctx)
defer cancel()
// Concurrency limiting mechanism ensures only Nconcurrent
// goroutines are running population.Advance at a time.
checkin := make(chan struct{}, Nconcurrent)
defer close(checkin)
// When Ngen is implemented there shall be exactly I goroutines
// each entrusted with it's own population to prevent data-races.
var wg sync.WaitGroup
// Advance will terminate on first error,
// we keep a buffer of four in just in case to prevent deadlock.
errChan := make(chan error, I*2) // TODO reduce channel length without causing deadlock.
defer close(errChan)
for i := 0; i < I; i++ {
i := i // Loop variable escape for closures.
wg.Add(1)
go func() (err error) {
defer func() {
a := recover()
if a != nil {
errChan <- fmt.Errorf("island (population) %d panic: %s", i, a)
cancel()
}
if err != nil {
errChan <- err
cancel()
}
wg.Done()
}()
for g := 0; g < Ngen; g++ {
checkin <- struct{}{}
err = is.islands[i].Advance(ctx)
if err != nil {
return err
}
err = is.islands[i].Selection(mutationRate, polygamy)
if err != nil {
return err
}
<-checkin
}
return nil
}()
}
wg.Wait()
// Population error handling.
if len(errChan) > 0 {
return <-errChan
}
// is.updateAttractiveness()
for i := 0; i < I; i++ {
mig := is.islands[i].generator()
errclone := mu8.Clone(mig, is.islands[i].Champion())
if errclone != nil {
return errclone
}
is.mw[i] = migrant[G]{mig, i}
}
return nil
}
// Crossover randomly distributes the selected migrants
// across islands.
func (is *Islands[G]) Crossover() {
I := len(is.islands)
// Perform crossover.
for i := 0; i < I; i++ {
migrant := is.mw[i]
for {
j := is.rng.Intn(I)
if migrant.origin != j {
is.islands[j].receiveMigrant(migrant.ind)
break
}
}
}
}
// Champion returns the individual with the best fitness among all islands.
func (is *Islands[G]) Champion() G {
champi := is.champIdx()
return is.islands[champi].Champion()
}
// Champion returns the best fitness among all island individuals.
func (is *Islands[G]) ChampionFitness() float64 {
champi := is.champIdx()
return is.islands[champi].ChampionFitness()
}
func (is *Islands[G]) champIdx() int {
maxFitness := 0.
maxidx := -1
for i := range is.islands {
champFitness := is.islands[i].ChampionFitness()
if champFitness > maxFitness {
maxFitness = champFitness
maxidx = i
}
}
if maxidx == -1 {
panic("all fitnesses zero. can't select champion before Advance completed")
}
return maxidx
}
func (is *Islands[G]) updateAttractiveness() {
I := len(is.islands)
for i := 0; i < I; i++ {
sum := 0.0
isle := &is.islands[i]
for k := range isle.prevFitness {
// iterate over individuals
sum += isle.prevFitness[k] - isle.fitness[k]
}
Sp := float64(len(isle.prevFitness)) // TODO: should this include only "live" (non-zero) fitnesses?
isle.attr = sum / Sp
}
}
// Not implemented.
// bias is a first order convergence indicatior showing the average percentage
// of the prominent value in each in each position of the individuals. A large bias
// means low genotypic diversity, and vice versa.
func (pop *Population[G]) bias() float64 {
sum := 0.0
N := 0.0
for _, fitness := range pop.fitness {
// We only take into account "live" Genomes for bias
if fitness != 0 {
sum += fitness
N++
}
}
return 1/N*math.Abs(sum-N/2) + 0.5
}