From b24703203d1085171016c1b55e233086d85a11d4 Mon Sep 17 00:00:00 2001 From: Hatice Karatay Date: Wed, 18 Oct 2023 14:00:31 -0400 Subject: [PATCH] Fix initial set of style errors --- .../Exoplanet_Transmission_Spectra_JWST.ipynb | 568 +++++++++--------- 1 file changed, 276 insertions(+), 292 deletions(-) diff --git a/notebooks/transit_spectroscopy_notebook/Exoplanet_Transmission_Spectra_JWST.ipynb b/notebooks/transit_spectroscopy_notebook/Exoplanet_Transmission_Spectra_JWST.ipynb index cff661f3a..2682b28b1 100644 --- a/notebooks/transit_spectroscopy_notebook/Exoplanet_Transmission_Spectra_JWST.ipynb +++ b/notebooks/transit_spectroscopy_notebook/Exoplanet_Transmission_Spectra_JWST.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "# BOTS Time Series Observations\n", - "\n ", - "**Use case:** Bright Object Time Series; extracting exoplanet spectra.
\n", + "\n", + " **Use case:** Bright Object Time Series; extracting exoplanet spectra.
\n", "**Data:** JWST simulated NIRSpec data from ground-based campaign; GJ436b spectra from the Goyal et al. (2018).
\n", "**Tools:** scikit, lmfit, scipy, matplotlip, astropy, pandas.
\n", "**Cross-intrument:** .
\n", @@ -61,22 +61,20 @@ "import matplotlib.pyplot as plt\n", "import matplotlib.ticker as ticker\n", "from matplotlib.backends.backend_pdf import PdfPages\n", - "from astropy.utils.data import get_pkg_data_filename, download_file\n", - "from astropy.table import Table, Column, MaskedColumn\n", + "from astropy.utils.data import download_file\n", + "from astropy.table import Table\n", "from astropy.io import fits, ascii\n", "from astropy.modeling.models import custom_model\n", "from astropy.modeling.fitting import LevMarLSQFitter\n", "import astropy.units as u\n", "from scipy.interpolate import interp1d, splev, splrep\n", - "import scipy.optimize as opt\n", "from scipy.io import readsav\n", "from scipy import stats\n", "import glob\n", "import lmfit\n", "import pickle\n", - "from os import path,mkdir\n", + "from os import path, mkdir\n", "from sklearn.linear_model import LinearRegression\n", - "import warnings\n", "import pandas as pd\n", "import os\n", "import shutil" @@ -97,39 +95,37 @@ "metadata": {}, "outputs": [], "source": [ - "#---------------------------------------------------------\n", "# SETUP ----------------------------------------------\n", "# Setup directories\n", - "save_directory ='./notebookrun2/' #local directory to save files to\n", - "data_directory ='./' #local data to work with fits files if desired\n", + "save_directory = './notebookrun2/' # Local directory to save files to\n", + "data_directory = './' # Local data to work with fits files if desired\n", "\n", "# Setup Detector Properties & Rednoise measurement timescale \n", - "gain = 1.0 # 2D spectra has already converted to counts, gain of detector is 1.0\n", - "binmeasure = 256 # Binning technique to measure rednoise, choose bin size to evaluate sigma_r\n", - "number_of_images = 8192 # Number of images in the dataset\n", - "\n", - "# Setup Planet Properies\n", - "grating = 'NIRSpecPrism'\n", - "ld_model = '3D' # 3D/1D stellar model choise (transit was injected with the 3D model)\n", - "\n", - "# Setup Stellar Properies for Limb-Darkening Calculation\n", - "Teff = 4500 # Effective Temperature (K)\n", - "logg = 4.5 # Surface Gravity\n", - "M_H = 0.0 # Stellar Metallicity log_10[M/H]\n", - "Rstar = 0.455 # planet radius (in units of solar radii Run)\n", - "\n", - "#Setup Transit parameters (can get from Nasa exoplanet archive)\n", - "t0 = 2454865.084034 # bjd time of inferior conjunction \n", - "per = 2.64389803 # orbital period (days) BJD_TDB\n", - "rp = 0.0804 # planet radius (in units of stellar radii)\n", - "a_Rs = 14.54 # semi-major axis (input a/Rstar so units of stellar radii)\n", - "inc = 86.858 *(2*np.pi/360) # orbital inclination (in degrees->radians)\n", - "ecc = 0.0 # eccentricity\n", - "omega = 0.0 *(2*np.pi/360) # longitude of periastron (in degrees->radians)\n", + "gain = 1.0 # 2D spectra has already converted to counts, gain of detector is 1.0\n", + "binmeasure = 256 # Binning technique to measure rednoise, choose bin size to evaluate sigma_r\n", + "number_of_images = 8192 # Number of images in the dataset\n", + "\n", + "# Setup Planet Properties\n", + "grating = 'NIRSpecPrism'\n", + "ld_model = '3D' # 3D/1D stellar model choice (transit was injected with the 3D model)\n", + "\n", + "# Setup Stellar Properties for Limb-Darkening Calculation\n", + "Teff = 4500 # Effective Temperature (K)\n", + "logg = 4.5 # Surface Gravity\n", + "M_H = 0.0 # Stellar Metallicity log_10[M/H]\n", + "Rstar = 0.455 # Planet radius (in units of solar radii Run)\n", + "\n", + "# Setup Transit parameters (can get from NASA exoplanet archive)\n", + "t0 = 2454865.084034 # bjd time of inferior conjunction \n", + "per = 2.64389803 # orbital period (days) BJD_TDB\n", + "rp = 0.0804 # Planet radius (in units of stellar radii)\n", + "a_Rs = 14.54 # Semi-major axis (input a/Rstar so units of stellar radii)\n", + "inc = 86.858 * (2*np.pi/360) # Orbital inclination (in degrees->radians)\n", + "ecc = 0.0 # Eccentricity\n", + "omega = 0.0 * (2*np.pi/360) # Longitude of periastron (in degrees->radians)\n", "\n", "rho_star = (3*np.pi)/(6.67259E-8*(per*86400)**2)*(a_Rs)**3 # Stellar Density (g/cm^3) from a/Rs\n", - "# a_Rs=(rho_star*6.67259E-8*per_sec*per_sec/(3*np.pi))**(1/3) # a/Rs from Stellar Density (g/cm^3)\n", - "#---------------------------------------------------------\n" + "# a_Rs=(rho_star*6.67259E-8*per_sec*per_sec/(3*np.pi))**(1/3) # a/Rs from Stellar Density (g/cm^3)" ] }, { @@ -139,9 +135,11 @@ "outputs": [], "source": [ "# Create local directories\n", - "if path.exists(save_directory) == False: mkdir(save_directory) #Create new directory to save outputs to if needed\n", - "if path.exists(save_directory+'3DGrid') == False: mkdir(save_directory+'3DGrid') #Create new directory to save\n", - "limb_dark_directory = save_directory # point to limb darkeing directory contaning 3DGrid/ directory" + "if not path.exists(save_directory):\n", + " mkdir(save_directory) # Create a new directory to save outputs to if needed\n", + "if not path.exists(save_directory+'3DGrid'): \n", + " mkdir(save_directory+'3DGrid') # Create new directory to save\n", + "limb_dark_directory = save_directory # Point to limb darkeing directory contaning 3DGrid/ directory" ] }, { @@ -168,19 +166,19 @@ "metadata": {}, "outputs": [], "source": [ - "#Download 1GB NIRSpec Data\n", - "fn_jw=save_directory+'jwst_data.pickle'\n", - "if path.exists(fn_jw) == False:\n", - " fn = download_file('https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/transit_spectroscopy_notebook/jwst_data.pickle')\n", + "# Download 1GB NIRSpec Data\n", + "fn_jw = save_directory+'jwst_data.pickle'\n", + "if not path.exists(fn_jw):\n", + " fn = download_file('https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/transit_spectroscopy_notebook/jwst_data.pickle')\n", " dest = shutil.move(fn,save_directory+'jwst_data.pickle') \n", " print('JWST Data Download Complete')\n", "\n", - "#Download further files needed, move to local directory for easier repeated access\n", - "fn_sens= download_file('https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/transit_spectroscopy_notebook/NIRSpec.prism.sensitivity.sav')\n", - "dest = shutil.move(fn_sens,save_directory+'NIRSpec.prism.sensitivity.sav') #Move files to save_directory\n", + "# Download further files needed, move to local directory for easier repeated access\n", + "fn_sens = download_file('https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/transit_spectroscopy_notebook/NIRSpec.prism.sensitivity.sav')\n", + "dest = shutil.move(fn_sens, save_directory+'NIRSpec.prism.sensitivity.sav') # Move files to save_directory\n", "\n", - "fn_ld = download_file('https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/transit_spectroscopy_notebook/3DGrid/mmu_t45g45m00v05.flx')\n", - "destld = shutil.move(fn_ld,save_directory+'3DGrid/mmu_t45g45m00v05.flx') " + "fn_ld = download_file('https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/transit_spectroscopy_notebook/3DGrid/mmu_t45g45m00v05.flx')\n", + "destld = shutil.move(fn_ld, save_directory+'3DGrid/mmu_t45g45m00v05.flx') " ] }, { @@ -196,79 +194,74 @@ "metadata": {}, "outputs": [], "source": [ - "if path.exists(fn_jw) == True:\n", + "if path.exists(fn_jw):\n", " dbfile = open(fn_jw, 'rb') # for reading also binary mode is important\n", " jwst_data = pickle.load(dbfile)\n", " print('Loading JWST data from Pickle File')\n", - " bjd =jwst_data['bjd']\n", - " wsdata_all =jwst_data['wsdata_all']\n", - " shx =jwst_data['shx']\n", - " shy =jwst_data['shy']\n", - " common_mode =jwst_data['common_mode']\n", - " all_spec =jwst_data['all_spec']\n", - " exposure_length=jwst_data['exposure_length']\n", + " bjd = jwst_data['bjd']\n", + " wsdata_all =jwst_data['wsdata_all']\n", + " shx = jwst_data['shx']\n", + " shy = jwst_data['shy']\n", + " common_mode = jwst_data['common_mode']\n", + " all_spec = jwst_data['all_spec']\n", + " exposure_length = jwst_data['exposure_length']\n", " dbfile.close() \n", " print('Done')\n", - "elif path.exists(fn_jw) == False:\n", - " #---------------------------------------------------------\n", - " # load all fits images\n", + "elif not path.exists(fn_jw):\n", + " # Load all fits images\n", " # Arrays created for BJD time, and the white light curve total_counts\n", - " list=glob.glob(data_directory+\"*.fits\")\n", - " index_of_images=np.arange(number_of_images) #\n", - " bjd=np.zeros((number_of_images))\n", - " exposure_length=np.zeros((number_of_images))\n", - " all_spec=np.zeros((32,512,number_of_images))\n", + " list = glob.glob(data_directory+\"*.fits\")\n", + " index_of_images = np.arange(number_of_images) \n", + " bjd = np.zeros((number_of_images))\n", + " exposure_length = np.zeros((number_of_images))\n", + " all_spec = np.zeros((32, 512, number_of_images))\n", " for i in index_of_images:\n", - " img=list[i]\n", + " img = list[i]\n", " print(img)\n", - " hdul=fits.open(img)\n", - " #hdul.info()\n", - " bjd_image=hdul[0].header['BJD_TDB']\n", - " BZERO=hdul[0].header['BZERO'] #flux value offset\n", - " bjd[i]=bjd_image\n", - " expleng=hdul[0].header['INTTIME'] #Total integration time for one MULTIACCUM (seconds)\n", - " exposure_length[i]=expleng/86400. #Total integration time for one MULTIACCUM (days)\n", + " hdul = fits.open(img)\n", + " # hdul.info()\n", + " bjd_image = hdul[0].header['BJD_TDB']\n", + " BZERO = hdul[0].header['BZERO'] # flux value offset\n", + " bjd[i] = bjd_image\n", + " expleng = hdul[0].header['INTTIME'] # Total integration time for one MULTIACCUM (seconds)\n", + " exposure_length[i] = expleng/86400. # Total integration time for one MULTIACCUM (days)\n", " print(bjd[i])\n", " data = hdul[0].data\n", - " #total counts in image\n", - " #total_counts[i]=gain*np.sum(data[11:18,170:200]-BZERO) #total counts in 12 pix wide aperature around pixel 60 image\n", - " all_spec[:,:,i]=gain*(data-BZERO) #load all spectra into an array subtract flux value offset\n", + " # total counts in image\n", + " # total_counts[i]=gain*np.sum(data[11:18,170:200]-BZERO) # total counts in 12 pix wide aperture around pixel 60 image\n", + " all_spec[:, :, i] = gain * (data-BZERO) # Load all spectra into an array subtract flux value offset\n", " hdul.close()\n", - " #Sort data\n", - " srt=np.argsort(bjd) #index to sort\n", - " bjd=bjd[srt]\n", - " #total_counts=total_counts[srt]\n", - " exposure_length=exposure_length[srt]\n", - " all_spec[:,:,:]=all_spec[:,:,srt]\n", - "\n", - " # Get Wavelegnth of Data\n", + " # Sort data\n", + " srt = np.argsort(bjd) # index to sort\n", + " bjd = bjd[srt]\n", + " # total_counts=total_counts[srt]\n", + " exposure_length = exposure_length[srt]\n", + " all_spec[:, :, :] = all_spec[:, :, srt]\n", + "\n", + " # Get Wavelength of Data\n", " file_wave = download_file('https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/transit_spectroscopy_notebook/JWST_NIRSpec_wavelength_microns.txt')\n", " f = open(file_wave, 'r')\n", " wsdata_all = np.genfromtxt(f)\n", " \n", - " print('wsdata size :',wsdata_all.shape)\n", - " print('Data wavelength Loaded :',wsdata_all)\n", - " print('wsdata new size :',wsdata_all.shape)\n", + " print('wsdata size :', wsdata_all.shape)\n", + " print('Data wavelength Loaded :', wsdata_all)\n", + " print('wsdata new size :', wsdata_all.shape)\n", " \n", - " #---------------------------------------------------------\n", " # Read in Detrending parameters\n", " # Mean of parameter must be 0.0 to be properly normalized\n", - " # Idealy standard deviation of paramter = 1.0\n", - " file_xy=download_file('https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/transit_spectroscopy_notebook/JWST_NIRSpec_Xposs_Yposs_CM_detrending.txt')\n", + " # Idealy standard deviation of parameter = 1.0\n", + " file_xy = download_file('https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/transit_spectroscopy_notebook/JWST_NIRSpec_Xposs_Yposs_CM_detrending.txt')\n", " f = open(file_xy, 'r')\n", " data = np.genfromtxt(f, delimiter=',')\n", - " shx = data[:,0]\n", - " shy = data[:,1]\n", - " common_mode= data[:,2]\n", + " shx = data[:, 0]\n", + " shy = data[:, 1]\n", + " common_mode = data[:, 2]\n", " \n", - " #Store Data into a pickle file\n", - " jwst_data={'bjd':bjd, 'wsdata_all':wsdata_all, 'shx':shx , 'shy':shy , 'common_mode':common_mode, 'all_spec':all_spec, 'exposure_length':exposure_length}\n", + " # Store Data in a pickle file\n", + " jwst_data = {'bjd':bjd, 'wsdata_all':wsdata_all, 'shx':shx , 'shy':shy , 'common_mode':common_mode, 'all_spec':all_spec, 'exposure_length':exposure_length}\n", " dbfile = open('jwst_data.pickle', 'ab') # Its important to use binary mode\n", - " pickle.dump(jwst_data,dbfile)\n", - " dbfile.close()\n", - " #---------------------------------------------------------\n", - "\n", - " " + " pickle.dump(jwst_data, dbfile)\n", + " dbfile.close()" ] }, { @@ -284,34 +277,34 @@ "metadata": {}, "outputs": [], "source": [ - "expnum=2 #Choose Exposure number to view\n", + "expnum = 2 # Choose Exposure number to view\n", "\n", "plt.rcParams['figure.figsize'] = [10.0, 3.0] # Figure dimensions\n", - "plt.rcParams['figure.dpi'] = 200 # Resolution\n", - "plt.rcParams['savefig.dpi'] = 200\n", - "plt.rcParams['image.aspect'] = 5 # Aspect ratio (the CCD is quite long!!!)\n", + "plt.rcParams['figure.dpi'] = 200 # Resolution\n", + "plt.rcParams['savefig.dpi'] = 200\n", + "plt.rcParams['image.aspect'] = 5 # Aspect ratio (the CCD is quite long!!!)\n", "plt.cmap = plt.cm.magma\n", "plt.cmap.set_bad('k',1.)\n", - "plt.rcParams['image.cmap'] = 'magma' # Colormap.\n", + "plt.rcParams['image.cmap'] = 'magma' # Colormap\n", "plt.rcParams['image.interpolation'] = 'none'\n", "plt.rcParams['image.origin'] = 'lower'\n", "plt.rcParams['font.family'] = \"monospace\"\n", "plt.rcParams['font.monospace'] = 'DejaVu Sans Mono'\n", "\n", - "img=all_spec[:,:,expnum]\n", - "zeros=np.where(img <= 0) #Plot on a log scale, so set zero or negative values to a small number \n", - "img[zeros]=1E-10\n", - "fig,axs = plt.subplots()\n", - "f=axs.imshow(np.log10(img),vmin=0) #Plot image\n", + "img = all_spec[:, :, expnum]\n", + "zeros = np.where(img <= 0) # Plot on a log scale, so set zero or negative values to a small number \n", + "img[zeros] = 1E-10\n", + "fig, axs = plt.subplots()\n", + "f = axs.imshow(np.log10(img), vmin=0) # Plot image\n", "plt.xlabel('x-pixel')\n", "plt.ylabel('y-pixel')\n", "axs.yaxis.set_major_locator(ticker.MultipleLocator(5))\n", "axs.yaxis.set_minor_locator(ticker.MultipleLocator(1))\n", "axs.xaxis.set_major_locator(ticker.MultipleLocator(50))\n", "axs.xaxis.set_minor_locator(ticker.MultipleLocator(10))\n", - "plt.title('2D NIRSpec Image of Exposure '+str(expnum))\n", - "fig.colorbar(f,label='Log$_{10}$ Electron counts',ax=axs)\n", - "plt.show()\n" + "plt.title('2D NIRSpec Image of Exposure ' + str(expnum))\n", + "fig.colorbar(f, label='Log$_{10}$ Electron counts', ax=axs)\n", + "plt.show()" ] }, { @@ -344,41 +337,39 @@ "outputs": [], "source": [ "all_spec.shape\n", - "y_lower = 11 # Lower extraction aperature\n", - "y_upper = 18 # Upper extraction aperature\n", + "y_lower = 11 # Lower extraction aperture\n", + "y_upper = 18 # Upper extraction aperture\n", "all_spec_1D=np.sum(all_spec[y_lower:y_upper,:,:],axis=0) # Sum along Y-axis from pixels 11 to 18\n", - "\n", - "#Plot \n", + "# Plot \n", "\n", "plt.rcParams['figure.figsize'] = [10.0, 3.0] # Figure dimensions\n", - "plt.rcParams['figure.dpi'] = 200 # Resolution\n", - "plt.rcParams['savefig.dpi'] = 200\n", - "plt.rcParams['image.aspect'] = 5 # Aspect ratio (the CCD is quite long!!!)\n", + "plt.rcParams['figure.dpi'] = 200 # Resolution\n", + "plt.rcParams['savefig.dpi'] = 200\n", + "plt.rcParams['image.aspect'] = 5 # Aspect ratio (the CCD is quite long!!!)\n", "plt.cmap = plt.cm.magma\n", - "plt.cmap.set_bad('k',1.)\n", - "plt.rcParams['image.cmap'] = 'magma' # Colormap.\n", + "plt.cmap.set_bad('k', 1.)\n", + "plt.rcParams['image.cmap'] = 'magma' # Colormap\n", "plt.rcParams['image.interpolation'] = 'none'\n", "plt.rcParams['image.origin'] = 'lower'\n", "plt.rcParams['font.family'] = \"monospace\"\n", "plt.rcParams['font.monospace'] = 'DejaVu Sans Mono'\n", "\n", - "img=all_spec[:,:,expnum]\n", - "zeros=np.where(img <= 0) #Plot on a log scale, so set zero or negitive values to a small number \n", - "img[zeros]=1E-10\n", - "fig,axs = plt.subplots()\n", - "f=axs.imshow(np.log10(img),vmin=0) #Plot image\n", + "img = all_spec[:, :, expnum]\n", + "zeros = np.where(img <= 0) # Plot on a log scale, so set zero or negitive values to a small number \n", + "img[zeros] = 1E-10\n", + "fig, axs = plt.subplots()\n", + "f = axs.imshow(np.log10(img), vmin=0) #Plot image\n", "plt.xlabel('x-pixel')\n", "plt.ylabel('y-pixel')\n", "axs.yaxis.set_major_locator(ticker.MultipleLocator(5))\n", "axs.yaxis.set_minor_locator(ticker.MultipleLocator(1))\n", "axs.xaxis.set_major_locator(ticker.MultipleLocator(50))\n", "axs.xaxis.set_minor_locator(ticker.MultipleLocator(10))\n", - "plt.axhline(y_lower, color = 'w', ls = 'dashed')\n", - "plt.axhline(y_upper, color = 'w', ls = 'dashed')\n", + "plt.axhline(y_lower, color='w', ls='dashed')\n", + "plt.axhline(y_upper, color='w', ls='dashed')\n", "plt.title('2D NIRSpec Image of Exposure '+str(expnum))\n", - "fig.colorbar(f,label='Log$_{10}$ Electron counts',ax=axs)\n", - "plt.show()\n", - "\n" + "fig.colorbar(f,label='Log$_{10}$ Electron counts', ax=axs)\n", + "plt.show()" ] }, { @@ -395,7 +386,7 @@ "outputs": [], "source": [ "fig,axs = plt.subplots()\n", - "f=plt.plot(wsdata_all,all_spec_1D[:,0], linewidth=2,zorder=0) #overplot Transit model at data\n", + "f = plt.plot(wsdata_all,all_spec_1D[:, 0], linewidth=2, zorder=0) # overplot Transit model at data\n", "plt.xlabel('Wavelength ($\\mu$m)')\n", "plt.ylabel('Flux (e-)')\n", "axs.xaxis.set_major_locator(ticker.MultipleLocator(0.5))\n", @@ -429,18 +420,17 @@ "metadata": {}, "outputs": [], "source": [ - "#---------------------------------------------------------\n", "#Calculate Orbital Phase\n", - "phase=(bjd-t0)/(per) #phase in days relative to T0 ephemeris\n", - "phase=phase-np.fix(phase[number_of_images-1]) # Have current phase occur at value 0.0\n", + "phase = (bjd-t0) / (per) # phase in days relative to T0 ephemeris\n", + "phase = phase - np.fix(phase[number_of_images-1]) # Have current phase occur at value 0.0\n", "\n", - "t_fine = np.linspace(np.min(bjd), np.max(bjd), 1000) #times at which to calculate light curve\n", - "phase_fine=(t_fine-t0)/(per) #phase in days relative to T0 ephemeris\n", - "phase_fine=phase_fine-np.fix(phase[number_of_images-1]) # Have current phase occur at value 0.0\n", + "t_fine = np.linspace(np.min(bjd), np.max(bjd), 1000) # times at which to calculate light curve\n", + "phase_fine = (t_fine-t0)/(per) # phase in days relative to T0 ephemeris\n", + "phase_fine = phase_fine-np.fix(phase[number_of_images-1]) # Have current phase occur at value 0.0\n", "\n", - "b0=a_Rs * np.sqrt((np.sin(phase * 2* np.pi)) ** 2 + (np.cos(inc) * np.cos(phase * 2 * np.pi)) ** 2)\n", - "intransit=(b0-rp < 1.0E0).nonzero() #Select indicies between first and fourth contact\n", - "outtransit=(b0-rp > 1.0E0).nonzero() #Select indicies out of transit\n" + "b0 = a_Rs * np.sqrt((np.sin(phase * 2* np.pi)) ** 2 + (np.cos(inc) * np.cos(phase * 2 * np.pi)) ** 2)\n", + "intransit = (b0-rp < 1.0E0).nonzero() # Select indicies between first and fourth contact\n", + "outtransit = (b0-rp > 1.0E0).nonzero() # Select indicies out of transit\n" ] }, { @@ -464,17 +454,17 @@ "metadata": {}, "outputs": [], "source": [ - "shx_tmp=shx/np.mean(shx)-1.0E0 #Set Mean around 0.0\n", - "shx_detrend=shx_tmp/np.std(shx_tmp) #Set standard deviation to 1.0\n", - "shy_tmp=shy/np.mean(shy)-1.0E0 #Set Mean around 0.0\n", - "shy_detrend=shy_tmp/np.std(shy_tmp) #Set standard deviation to 1.0\n", + "shx_tmp = shx / np.mean(shx) - 1.0E0 # Set Mean around 0.0\n", + "shx_detrend = shx_tmp/np.std(shx_tmp) # Set standard deviation to 1.0\n", + "shy_tmp = shy / np.mean(shy) - 1.0E0 # Set Mean around 0.0\n", + "shy_detrend = shy_tmp/np.std(shy_tmp) # Set standard deviation to 1.0\n", "\n", - "cm=common_mode/np.mean(common_mode)-1.0E0\n", - "cm_detrend=cm/np.std(cm)\n", + "cm = common_mode / np.mean(common_mode) - 1.0E0\n", + "cm_detrend = cm/np.std(cm)\n", "\n", "fig,axs = plt.subplots()\n", - "plt.plot(shx_detrend,label='X-possition')\n", - "plt.plot(shy_detrend,label='Y-possition')\n", + "plt.plot(shx_detrend, label='X-possition')\n", + "plt.plot(shy_detrend, label='Y-possition')\n", "plt.xlabel('Image Sequence Number')\n", "plt.ylabel('Relative Detector Possition')\n", "plt.title('Time-series Detrending Vectors')\n", @@ -511,15 +501,14 @@ "metadata": {}, "outputs": [], "source": [ - "shx=shx_detrend\n", - "shy=shy_detrend\n", + "shx = shx_detrend\n", + "shy = shy_detrend\n", "common_mode=cm_detrend\n", "\n", - "XX=np.array([shx,shy,shx**2,shy**2,shx*shy,common_mode,np.ones(number_of_images)]) #Detrending array without linear time trend\n", + "XX=np.array([shx, shy, shx**2, shy**2, shx*shy, common_mode, np.ones(number_of_images)]) # Detrending array without linear time trend\n", "XX=np.transpose(XX)\n", - "XXX=np.array([shx,shy,shx**2,shy**2,shx*shy,common_mode,phase,np.ones(number_of_images)]) #Detrending array with with linear time trend\n", - "XXX=np.transpose(XXX)\n", - "\n" + "XXX=np.array([shx,shy, shx**2, shy**2, shx*shy, common_mode, phase, np.ones(number_of_images)]) # Detrending array with with linear time trend\n", + "XXX=np.transpose(XXX)" ] }, { @@ -537,27 +526,27 @@ "metadata": {}, "outputs": [], "source": [ - "pix1=170 # wavelength bin lower range\n", - "pix2=200 # wavelength bin upper range\n", - "y=np.sum(all_spec_1D[pix1:pix2,:],axis=0) # flux over a selected wavelength bin\n", + "pix1 = 170 # wavelength bin lower range\n", + "pix2 = 200 # wavelength bin upper range\n", + "y = np.sum(all_spec_1D[pix1:pix2, :], axis=0) # flux over a selected wavelength bin\n", "\n", - "msize=plt.rcParams['lines.markersize'] ** 2. # default marker size\n", + "msize = plt.rcParams['lines.markersize'] ** 2. # default marker size\n", "plt.rcParams['figure.figsize'] = [10.0, 3.0] # Figure dimensions\n", "\n", "fig,axs = plt.subplots()\n", - "f=plt.plot(wsdata_all,all_spec_1D[:,0], linewidth=2,zorder=0) #Plot Region of wavelength bin\n", - "plt.fill_between(wsdata_all[pix1:pix2],0,all_spec_1D[pix1:pix2,0],alpha=0.5)\n", + "f = plt.plot(wsdata_all,all_spec_1D[:, 0], linewidth=2, zorder=0) #P lot Region of wavelength bin\n", + "plt.fill_between(wsdata_all[pix1:pix2], 0, all_spec_1D[pix1:pix2,0], alpha=0.5)\n", "plt.xlabel('Wavelength ($\\mu$m)')\n", "plt.ylabel('Flux (e-)')\n", "plt.title('1D Extracted Spectrum')\n", "axs.xaxis.set_major_locator(ticker.MultipleLocator(0.5))\n", "axs.xaxis.set_minor_locator(ticker.MultipleLocator(0.1))\n", - "plt.annotate('H$_2$O',xy=(3.0,42000))\n", - "plt.annotate('CO$_2$',xy=(4.2,42000))\n", + "plt.annotate('H$_2$O', xy=(3.0, 42000))\n", + "plt.annotate('CO$_2$', xy=(4.2, 42000))\n", "plt.show()\n", "\n", - "fig,axs = plt.subplots()\n", - "plt.scatter(bjd,y/np.mean(y[outtransit]),label='$f(t)$ Data',zorder=1,s=msize*0.75,linewidth=1 ,alpha=0.4, marker='+',edgecolors='blue')\n", + "fig, axs = plt.subplots()\n", + "plt.scatter(bjd, y/np.mean(y[outtransit]), label='$f(t)$ Data', zorder=1, s=msize*0.75, linewidth=1 , alpha=0.4, marker='+',edgecolors='blue')\n", "plt.xlabel('Barycentric Julian Date (days)')\n", "plt.ylabel('Relative Flux')\n", "plt.title('Time-series Transit Light Curve $\\lambda=$['+str(wsdata_all[pix1])+':'+str(wsdata_all[pix2])+'] $\\mu$m')\n", @@ -585,12 +574,12 @@ "metadata": {}, "outputs": [], "source": [ - "yfit=regressor.predict(XX) # Project the fit over the whole time series\n", + "yfit = regressor.predict(XX) # Project the fit over the whole time series\n", "\n", "plt.rcParams['figure.figsize'] = [10.0, 7.0] # Figure dimensions\n", - "msize=plt.rcParams['lines.markersize'] ** 2. # default marker size\n", - "plt.scatter(bjd,y/np.mean(y[outtransit]),label='$f(t)$ Data',zorder=1,s=msize*0.75,linewidth=1 ,alpha=0.5, marker='+',edgecolors='blue')\n", - "f=plt.plot(bjd,yfit,label='$S(x)$ Regression fit ', linewidth=2,color='orange',zorder=2,alpha=0.85)\n", + "msize = plt.rcParams['lines.markersize'] ** 2. # default marker size\n", + "plt.scatter(bjd, y/np.mean(y[outtransit]),label='$f(t)$ Data',zorder=1, s=msize*0.75, linewidth=1 , alpha=0.5, marker='+', edgecolors='blue')\n", + "f = plt.plot(bjd, yfit, label='$S(x)$ Regression fit ', linewidth=2, color='orange', zorder=2, alpha=0.85)\n", "plt.xlabel('Barycentric Julian Date (days)')\n", "plt.ylabel('Relative Flux')\n", "plt.title('Time-series Transit Light Curve $\\lambda=$['+str(wsdata_all[pix1])+':'+str(wsdata_all[pix2])+'] $\\mu$m')\n", @@ -598,8 +587,8 @@ "axs.xaxis.set_minor_locator(ticker.MultipleLocator(0.005))\n", "axs.yaxis.set_major_locator(ticker.MultipleLocator(0.002))\n", "axs.yaxis.set_minor_locator(ticker.MultipleLocator(0.001))\n", - "yplot=y/np.mean(y[outtransit])\n", - "plt.ylim(yplot.min()*0.999, yplot.max()*1.001)\n", + "yplot = y / np.mean(y[outtransit])\n", + "plt.ylim(yplot.min() * 0.999, yplot.max()*1.001)\n", "plt.xlim(bjd.min()-0.001, bjd.max()+0.001)\n", "plt.legend(loc='lower left')\n", "plt.show()" @@ -1167,22 +1156,22 @@ "metadata": {}, "outputs": [], "source": [ - "#Functions to call and calculate models\n", + "# Functions to call and calculate models\n", "def residual(p,phase,x,y,err,c1, c2, c3, c4):\n", - " #calculate new orbit\n", - " b0=p['a_Rs'].value * np.sqrt((np.sin(phase * 2* np.pi)) ** 2 + (p['cosinc'].value * np.cos(phase * 2 * np.pi)) ** 2)\n", - " #Select indicies between first and fourth contact\n", - " intransit=(b0-p['rprs'].value < 1.0E0).nonzero()\n", - " #Make light curve model, set all values initially to 1.0\n", - " light_curve=b0/b0\n", - " mulimb0, mulimbf = occultnl(p['rprs'].value, c1, c2, c3, c4, b0[intransit]) #Madel and Agol\n", + " # calculate new orbit\n", + " b0 = p['a_Rs'].value * np.sqrt((np.sin(phase * 2* np.pi)) ** 2 + (p['cosinc'].value * np.cos(phase * 2 * np.pi)) ** 2)\n", + " # Select indicies between first and fourth contact\n", + " intransit = (b0-p['rprs'].value < 1.0E0).nonzero()\n", + " # Make light curve model, set all values initially to 1.0\n", + " light_curve = b0/b0\n", + " mulimb0, mulimbf = occultnl(p['rprs'].value, c1, c2, c3, c4, b0[intransit]) # Madel and Agol\n", " light_curve[intransit]=mulimb0\n", " model=(light_curve)*p['f0'].value * (p['Fslope'].value*phase + p['xsh'].value*shx + p['x2sh'].value*shx**2. + p['ysh'].value*shy + p['y2sh'].value*shy**2. + p['xysh'].value*shy*shx + p['comm'].value*common_mode + 1.0) # transit model is baseline flux X transit model X systematics model\n", " chi2now=np.sum((y-model)**2/err**2)\n", " res=np.std((y-model)/p['f0'].value)\n", - " print(\"rprs: \",p['rprs'].value,\"current chi^2=\",chi2now,' scatter ',res,end=\"\\r\")\n", + " print(\"rprs: \", p['rprs'].value, \"current chi^2=\", chi2now,' scatter ', res, end=\"\\r\")\n", " return (y-model)/err\n", - " #return np.sum((y-model)**2/err**2)" + " # return np.sum((y-model)**2/err**2)" ] }, { @@ -1198,10 +1187,10 @@ "metadata": {}, "outputs": [], "source": [ - "def model_fine(p): #Make Transit model with a fine grid for plotting purposes\n", - " b0=p['a_Rs'].value * np.sqrt((np.sin(phase_fine * 2* np.pi)) ** 2 + (p['cosinc'].value * np.cos(phase_fine * 2 * np.pi)) ** 2)\n", - " mulimb0, mulimbf = occultnl(p['rprs'].value, c1, c2, c3, c4, b0) #Madel and Agol\n", - " model_fine=mulimb0\n", + "def model_fine(p): # Make Transit model with a fine grid for plotting purposes\n", + " b0 = p['a_Rs'].value * np.sqrt((np.sin(phase_fine * 2* np.pi)) ** 2 + (p['cosinc'].value * np.cos(phase_fine * 2 * np.pi)) ** 2)\n", + " mulimb0, mulimbf = occultnl(p['rprs'].value, c1, c2, c3, c4, b0) # Madel and Agol\n", + " model_fine = mulimb0\n", " return model_fine" ] }, @@ -1218,13 +1207,12 @@ "metadata": {}, "outputs": [], "source": [ - "wave1=wsdata_all[pix1]\n", - "wave2=wsdata_all[pix2]\n", + "wave1 = wsdata_all[pix1]\n", + "wave2 = wsdata_all[pix2]\n", "bin_wave_index = ((wsdata_all > wave1) & (wsdata_all <= wave2)).nonzero()\n", - "wsdata=wsdata_all[bin_wave_index]*1E4 # Select wavelength bin values (um=> angstroms)\n", + "wsdata = wsdata_all[bin_wave_index]*1E4 # Select wavelength bin values (um=> angstroms)\n", "\n", - "_uLD, c1, c2, c3, c4, _cp1, _cp2, _cp3, _cp4, aLD, bLD = limb_dark_fit(grating,wsdata, M_H, Teff,logg, limb_dark_directory, ld_model)\n", - "\n" + "_uLD, c1, c2, c3, c4, _cp1, _cp2, _cp3, _cp4, aLD, bLD = limb_dark_fit(grating,wsdata, M_H, Teff,logg, limb_dark_directory, ld_model)" ] }, { @@ -1242,23 +1230,23 @@ "metadata": {}, "outputs": [], "source": [ - "#Run the Transit Model\n", + "# Run the Transit Model\n", "rl = 0.0825 # Planet-to-star Radius Ratio\n", "\n", - "b0=a_Rs * np.sqrt((np.sin(phase * 2* np.pi)) ** 2 + (np.cos(inc) * np.cos(phase * 2 * np.pi)) ** 2)\n", - "intransit=(b0-rl < 1.0E0).nonzero() #Select indicies between first and fourth contact\n", + "b0 = a_Rs * np.sqrt((np.sin(phase * 2* np.pi)) ** 2 + (np.cos(inc) * np.cos(phase * 2 * np.pi)) ** 2)\n", + "intransit = (b0-rl < 1.0E0).nonzero() #Select indicies between first and fourth contact\n", "\n", "mulimb0, mulimbf = occultnl(rl, c1, c2, c3, c4, b0) #Mandel & Agol non-linear limb darkened transit model\n", - "model=mulimb0*yfit \n", + "model = mulimb0*yfit \n", "\n", - "#plot\n", + "# plot\n", "plt.rcParams['figure.figsize'] = [10.0, 7.0] # Figure dimensions\n", - "msize=plt.rcParams['lines.markersize'] ** 2. # default marker size\n", - "fig=plt.figure(constrained_layout=True)\n", - "gs = fig.add_gridspec(3, 1,hspace=0.00, wspace=0.00)\n", - "ax1=fig.add_subplot(gs[0:2,:])\n", - "ax1.scatter(bjd,y/np.mean(y[outtransit]),label='$f(t)$ Data',zorder=1,s=msize*0.75,linewidth=1 ,alpha=0.5, marker='+',edgecolors='blue')\n", - "ax1.plot(bjd,model,label='$S(x)$ Regression fit ', linewidth=2,color='orange',zorder=2,alpha=0.85)\n", + "msize = plt.rcParams['lines.markersize'] ** 2. # default marker size\n", + "fig = plt.figure(constrained_layout=True)\n", + "gs = fig.add_gridspec(3, 1, hspace=0.00, wspace=0.00)\n", + "ax1 = fig.add_subplot(gs[0:2, :])\n", + "ax1.scatter(bjd, y/np.mean(y[outtransit]), label='$f(t)$ Data', zorder=1, s=msize*0.75, linewidth=1 , alpha=0.5, marker='+', edgecolors='blue')\n", + "ax1.plot(bjd,model, label='$S(x)$ Regression fit ', linewidth=2, color='orange', zorder=2, alpha=0.85)\n", "ax1.xaxis.set_ticklabels([])\n", "plt.ylabel('Relative Flux')\n", "plt.title('Time-series Transit Light Curve $\\lambda=$['+str(wsdata_all[pix1])+':'+str(wsdata_all[pix2])+'] $\\mu$m')\n", @@ -1266,31 +1254,31 @@ "ax1.xaxis.set_minor_locator(ticker.MultipleLocator(0.005))\n", "ax1.yaxis.set_major_locator(ticker.MultipleLocator(0.002))\n", "ax1.yaxis.set_minor_locator(ticker.MultipleLocator(0.001))\n", - "yplot=y/np.mean(y[outtransit])\n", + "yplot = y/np.mean(y[outtransit])\n", "plt.ylim(yplot.min()*0.999, yplot.max()*1.001)\n", "plt.xlim(bjd.min()-0.001, bjd.max()+0.001)\n", "plt.legend()\n", "fig.add_subplot(ax1)\n", - "#Residual\n", - "ax2=fig.add_subplot(gs[2,:])\n", - "ax2.scatter(bjd,1E6*(y/np.mean(y[outtransit])-model),label='$f(t)$ Data',zorder=1,s=msize*0.75,linewidth=1 ,alpha=0.5, marker='+',edgecolors='blue')\n", + "# Residual\n", + "ax2=fig.add_subplot(gs[2, :])\n", + "ax2.scatter(bjd, 1E6*(y/np.mean(y[outtransit])-model), label='$f(t)$ Data', zorder=1, s=msize*0.75, linewidth=1, alpha=0.5, marker='+', edgecolors='blue')\n", "wsb, wsb_bin_edges,binnumber = stats.binned_statistic(bjd,1E6*(y/np.mean(y[outtransit])-model), bins=256)\n", "plt.scatter(wsb_bin_edges[1:],wsb, linewidth=2,alpha=0.75,facecolors='orange',edgecolors='none', marker='o',zorder=25)\n", "plt.xlabel('Barycentric Julian Date (days)')\n", "plt.ylabel('Residual (ppm)')\n", "ax2.xaxis.set_major_locator(ticker.MultipleLocator(0.01))\n", "ax2.xaxis.set_minor_locator(ticker.MultipleLocator(0.005))\n", - "yplot=y/np.mean(y[outtransit])\n", + "yplot = y / np.mean(y[outtransit])\n", "plt.xlim(bjd.min()-0.001, bjd.max()+0.001)\n", "fig.add_subplot(ax2)\n", "plt.show()\n", "\n", "#print chi^2 value\n", - "err=np.sqrt(y)/np.mean(y[outtransit])\n", + "err = np.sqrt(y) / np.mean(y[outtransit])\n", "print('Chi^2 = '+str(np.sum((y/np.mean(y[outtransit])-model)**2/err**2)))\n", "\n", "print('Residual Standard Deviation : '+str(1E6*np.std((y/np.mean(y[outtransit])-model)))+' ppm')\n", - "print('256 Bin Standard Deviation :'+str(np.std(wsb))+' ppm')\n" + "print('256 Bin Standard Deviation :'+str(np.std(wsb))+' ppm')" ] }, { @@ -1348,17 +1336,17 @@ "metadata": {}, "outputs": [], "source": [ - "k0 = 113 #98 #100\n", + "k0 = 113 #98 #100\n", "kend = 392 #422\n", - "wk = 15\n", + "wk = 15\n", "number_of_bins = int((kend-k0)/wk)\n", - "wsd = np.zeros((number_of_bins))\n", + "wsd = np.zeros((number_of_bins))\n", "werr = np.zeros((number_of_bins))\n", "rprs = np.zeros((number_of_bins))\n", "rerr = np.zeros((number_of_bins))\n", "sig_r = np.zeros((number_of_bins))\n", "sig_w = np.zeros((number_of_bins))\n", - "beta = np.zeros((number_of_bins))\n", + "beta = np.zeros((number_of_bins))\n", "depth = np.zeros((number_of_bins))\n", "depth_err = np.zeros((number_of_bins))" ] @@ -1380,27 +1368,24 @@ "outputs": [], "source": [ "k=k0 #wavelength to start\n", - "#--------------------------------------------------------------------------\n", - "#Loop over wavelength bins and fit for each one\n", + "# --------------------------------------------------------------------------\n", + "# Loop over wavelength bins and fit for each one\n", "for bin in range(0,number_of_bins):\n", " \n", - " #---------------------------------------------------------\n", " # Select wavelength bin\n", - " wave1=wsdata_all[k]\n", - " wave2=wsdata_all[k+wk]\n", + " wave1 = wsdata_all[k]\n", + " wave2 = wsdata_all[k+wk]\n", "\n", - " #Indicies to select for wavelgth bin\n", + " # Indicies to select for wavelgth bin\n", " bin_wave_index = ((wsdata_all > wave1) & (wsdata_all <= wave2)).nonzero()\n", "\n", - " #make light curve bin\n", - " wave_bin_counts=np.sum(all_spec_1D[k+1:k+wk,:],axis=0) #Sum Wavelength pixels\n", - " wave_bin_counts_err=np.sqrt(wave_bin_counts) #adopt photon noise for errors\n", - " #---------------------------------------------------------\n", + " # make light curve bin\n", + " wave_bin_counts = np.sum(all_spec_1D[k+1:k+wk, :], axis=0) # Sum Wavelength pixels\n", + " wave_bin_counts_err = np.sqrt(wave_bin_counts) # adopt photon noise for errors\n", "\n", - " #---------------------------------------------------------\n", " # Calculate Limb Darkening\n", "\n", - " wsdata=wsdata_all[bin_wave_index]*1E4 # Select wavelength bin values (um=> angstroms)\n", + " wsdata = wsdata_all[bin_wave_index]*1E4 # Select wavelength bin values (um=> angstroms)\n", " _uLD, c1, c2, c3, c4, _cp1, _cp2, _cp3, _cp4, aLD, bLD = limb_dark_fit(grating,wsdata, M_H, Teff,logg, limb_dark_directory, ld_model)\n", "\n", " print('\\nc1 = {}'.format(c1))\n", @@ -1408,58 +1393,55 @@ " print('c3 = {}'.format(c3))\n", " print('c4 = {}'.format(c4))\n", " print('')\n", - " #u = [c1,c2,c3,c4] #limb darkening coefficients\n", + " # u = [c1,c2,c3,c4] # limb darkening coefficients\n", " u = [aLD,bLD]\n", - " #---------------------------------------------------------\n", "\n", - " #---------------------------------------------------------\n", " # Make initial model\n", " \n", " #Setup LMFIT\n", - " x=bjd # X data\n", - " y=wave_bin_counts # Y data\n", - " err=wave_bin_counts_err # Y Error\n", + " x = bjd # X data\n", + " y = wave_bin_counts # Y data\n", + " err = wave_bin_counts_err # Y Error\n", "\n", - " #Perform Quick Linear regression on out-of-transit data to obtain accurate starting Detector fit values\n", + " # Perform Quick Linear regression on out-of-transit data to obtain accurate starting Detector fit values\n", " if wave1 > 2.7 and wave1 < 3.45:\n", " regressor.fit(XXX[outtransit], y[outtransit]/np.mean(y[outtransit]))\n", " else:\n", " regressor.fit(XX[outtransit], y[outtransit]/np.mean(y[outtransit]))\n", "\n", " # create a set of Parameters for LMFIT https://lmfit.github.io/lmfit-py/parameters.html\n", - " #class Parameter(name, value=None, vary=True, min=- inf, max=inf, expr=None, brute_step=None, user_data=None)¶\n", - " #Set vary=0 to fix\n", - " #Set vary=1 to fit\n", + " # class Parameter(name, value=None, vary=True, min=- inf, max=inf, expr=None, brute_step=None, user_data=None)¶\n", + " # Set vary=0 to fix\n", + " # Set vary=1 to fit\n", " p = lmfit.Parameters() #object to store L-M fit Parameters # Parameter Name\n", - " p.add('cosinc' , value=np.cos(inc) ,vary=0) # inclination, vary cos(inclin)\n", - " p.add('rho_star', value=rho_star ,vary=0) # stellar density\n", - " p.add('a_Rs' , value=a_Rs ,vary=0) # a/Rstar\n", - " p.add('rprs' , value=rp ,vary=1, min=0, max=1) # planet-to-star radius ratio\n", - " p.add('t0' , value=t0 ,vary=0) # Transit T0\n", - " p.add('f0' , value=np.mean(y[outtransit]),vary=1, min=0) # Baseline Flux\n", - " p.add('ecc' , value=ecc ,vary=0, min=0 , max=1) # eccentricity\n", - " p.add('omega' , value=omega ,vary=0) # arguments of periatron\n", - " #Turn on a linear slope in water feature to account for presumably changing H2O ice builtup on widow during cryogenic test\n", + " p.add('cosinc', value=np.cos(inc), vary=0) # inclination, vary cos(inclin)\n", + " p.add('rho_star', value=rho_star, vary=0) # stellar density\n", + " p.add('a_Rs', value=a_Rs, vary=0) # a/Rstar\n", + " p.add('rprs', value=rp, vary=1, min=0, max=1) # planet-to-star radius ratio\n", + " p.add('t0', value=t0, vary=0) # Transit T0\n", + " p.add('f0', value=np.mean(y[outtransit]), vary=1, min=0) # Baseline Flux\n", + " p.add('ecc', value=ecc, vary=0, min=0, max=1) # eccentricity\n", + " p.add('omega', value=omega, vary=0) # arguments of periatron\n", + " # Turn on a linear slope in water feature to account for presumably changing H2O ice builtup on widow during cryogenic test\n", " if wave1 > 2.7 and wave1 < 3.45:\n", - " p.add('Fslope', value=regressor.coef_[6] ,vary=1) # Orbital phase\n", + " p.add('Fslope', value=regressor.coef_[6], vary=1) # Orbital phase\n", " else:\n", - " p.add('Fslope', value=0 ,vary=0) # Orbital phase\n", - " p.add('xsh' , value=regressor.coef_[0] ,vary=1) # Detector X-shift detrending\n", - " p.add('ysh' , value=regressor.coef_[1] ,vary=1) # Detector X-shift detrending\n", - " p.add('x2sh' , value=regressor.coef_[2] ,vary=1) # Detector X^2-shift detrending\n", - " p.add('y2sh' , value=regressor.coef_[3] ,vary=1) # Detector Y^2-shift detrending\n", - " p.add('xysh' , value=regressor.coef_[4] ,vary=1) # Detector X*Y detrending\n", - " p.add('comm' , value=regressor.coef_[5] ,vary=1) # Common-Mode detrending\n", + " p.add('Fslope', value=0, vary=0) # Orbital phase\n", + " p.add('xsh', value=regressor.coef_[0], vary=1) # Detector X-shift detrending\n", + " p.add('ysh', value=regressor.coef_[1], vary=1) # Detector X-shift detrending\n", + " p.add('x2sh', value=regressor.coef_[2], vary=1) # Detector X^2-shift detrending\n", + " p.add('y2sh', value=regressor.coef_[3], vary=1) # Detector Y^2-shift detrending\n", + " p.add('xysh', value=regressor.coef_[4], vary=1) # Detector X*Y detrending\n", + " p.add('comm', value=regressor.coef_[5], vary=1) # Common-Mode detrending\n", " \n", - " #--------------------------------------------------------------------------\n", " # Perform Minimization https://lmfit.github.io/lmfit-py/fitting.html\n", " # create Minimizer\n", " # mini = lmfit.Minimizer(residual, p, nan_policy='omit',fcn_args=(phase,x,y,err)\n", " print('')\n", - " print('Fitting Bin',bin,' Wavelength =',np.mean(wsdata)/1E4, ' Range= [',wave1,':',wave2,']')\n", + " print('Fitting Bin', bin,' Wavelength =', np.mean(wsdata)/1E4, ' Range= [',wave1, ':', wave2,']')\n", "\n", " # solve with Levenberg-Marquardt using the\n", - " result = lmfit.minimize(residual,params=p,args=(phase,x,y,err,c1, c2, c3, c4))\n", + " result = lmfit.minimize(residual, params=p, args=(phase, x, y, err, c1, c2, c3, c4))\n", " #result = mini.minimize(method='emcee')\n", "\n", " print('')\n", @@ -1484,54 +1466,56 @@ "\n", " #Update with best-fit parameters\n", " p['rho_star'].value = result.params['rho_star'].value\n", - " p['cosinc'].value = result.params['cosinc'].value\n", - " p['rprs'].value = result.params['rprs'].value\n", - " p['t0'].value = result.params['t0'].value\n", - " p['f0'].value = result.params['f0'].value\n", - " p['Fslope'].value = result.params['Fslope'].value\n", - " p['xsh'].value = result.params['xsh'].value\n", - " p['ysh'].value = result.params['ysh'].value\n", - " p['x2sh'].value = result.params['x2sh'].value\n", - " p['y2sh'].value = result.params['y2sh'].value\n", - " p['xysh'].value = result.params['xysh'].value\n", - " p['comm'].value = result.params['comm'].value\n", + " p['cosinc'].value = result.params['cosinc'].value\n", + " p['rprs'].value = result.params['rprs'].value\n", + " p['t0'].value = result.params['t0'].value\n", + " p['f0'].value = result.params['f0'].value\n", + " p['Fslope'].value = result.params['Fslope'].value\n", + " p['xsh'].value = result.params['xsh'].value\n", + " p['ysh'].value = result.params['ysh'].value\n", + " p['x2sh'].value = result.params['x2sh'].value\n", + " p['y2sh'].value = result.params['y2sh'].value\n", + " p['xysh'].value = result.params['xysh'].value\n", + " p['comm'].value = result.params['comm'].value\n", " # Update Fit Spectra arrays\n", - " wsd[bin]=np.mean(wsdata)/1E4\n", - " werr[bin]=(wsdata.max()-wsdata.min())/2E4\n", - " rprs[bin]=result.params['rprs'].value\n", - " rerr[bin]=result.params['rprs'].stderr\n", + " wsd[bin] = np.mean(wsdata)/1E4\n", + " werr[bin] = (wsdata.max()-wsdata.min())/2E4\n", + " rprs[bin] = result.params['rprs'].value\n", + " rerr[bin] = result.params['rprs'].stderr\n", "\n", " # Calculate Bestfit Model\n", - " final_model=y-result.residual*err\n", - " final_model_fine=model_fine(p)\n", - "\n", - " #More Stats\n", - " resid=(y-final_model)/p['f0'].value\n", - " residppm=1E6*(y-final_model)/p['f0'].value\n", - " residerr=err/p['f0'].value\n", - " sigma=np.std((y-final_model)/p['f0'].value)*1E6\n", - " print(\"Residual standard deviation (ppm) : \",1E6*np.std((y-final_model)/p['f0'].value))\n", + " final_model = y-result.residual*err\n", + " final_model_fine = model_fine(p)\n", + "\n", + " # More Stats\n", + " resid = (y-final_model)/p['f0'].value\n", + " residppm = 1E6*(y-final_model)/p['f0'].value\n", + " residerr = err/p['f0'].value\n", + " sigma = np.std((y-final_model)/p['f0'].value)*1E6\n", + " print(\"Residual standard deviation (ppm) : \", 1E6*np.std((y-final_model)/p['f0'].value))\n", " print(\"Photon noise (ppm) : \", (1/np.sqrt(p['f0'].value))*1E6 )\n", " print(\"Photon noise performance (%) : \", (1/np.sqrt(p['f0'].value))*1E6 / (sigma) *100 )\n", " n = text_file.write(\"\\nResidual standard deviation (ppm) : \"+str(1E6*np.std((y-final_model)/p['f0'].value)))\n", " n = text_file.write(\"\\nPhoton noise (ppm) : \"+str((1/np.sqrt(p['f0'].value))*1E6))\n", " n = text_file.write(\"\\nPhoton noise performance (%) : \"+str((1/np.sqrt(p['f0'].value))*1E6 / (sigma) *100 ))\n", " \n", - " #Measure Rednoise with Binning Technique\n", - " sig0=np.std(resid)\n", - " bins=number_of_images/binmeasure\n", + " # Measure Rednoise with Binning Technique\n", + " sig0 = np.std(resid)\n", + " bins = number_of_images / binmeasure\n", " wsb, wsb_bin_edges,binnumber = stats.binned_statistic(bjd,resid, bins=bins)\n", - " sig_binned=np.std(wsb)\n", - " sigrednoise=np.sqrt(sig_binned**2-sig0**2/binmeasure)\n", - " if np.isnan(sigrednoise) == True : sigrednoise=0 #if no rednoise detected, set to zero\n", - " sigwhite =np.sqrt(sig0**2-sigrednoise**2)\n", - " sigrednoise=np.sqrt(sig_binned**2-sigwhite**2/binmeasure)\n", - " if np.isnan(sigrednoise) == True : sigrednoise=0 #if no rednoise detected, set to zero\n", - " beta[bin]=np.sqrt(sig0**2+binmeasure*sigrednoise**2)/sig0\n", + " sig_binned = np.std(wsb)\n", + " sigrednoise = np.sqrt(sig_binned**2-sig0**2/binmeasure)\n", + " if np.isnan(sigrednoise):\n", + " sigrednoise=0 # if no rednoise detected, set to zero\n", + " sigwhite =np.sqrt(sig0**2-sigrednoise**2)\n", + " sigrednoise = np.sqrt(sig_binned**2-sigwhite**2/binmeasure)\n", + " if np.isnan(sigrednoise): \n", + " sigrednoise=0 #if no rednoise detected, set to zero\n", + " beta[bin] = np.sqrt(sig0**2+binmeasure*sigrednoise**2)/sig0\n", " \n", - " print(\"White noise (ppm) : \",1E6*sigwhite)\n", - " print(\"Red noise (ppm) : \",1E6*sigrednoise)\n", - " print(\"Transit depth measured error (ppm) : \",2E6*result.params['rprs'].value*result.params['rprs'].stderr)\n", + " print(\"White noise (ppm) : \", 1E6*sigwhite)\n", + " print(\"Red noise (ppm) : \", 1E6*sigrednoise)\n", + " print(\"Transit depth measured error (ppm) : \", 2E6*result.params['rprs'].value*result.params['rprs'].stderr)\n", " \n", " n = text_file.write(\"\\nWhite noise (ppm) : \"+str(1E6*sigwhite))\n", " n = text_file.write(\"\\nRed noise (ppm) : \"+str(1E6*sigrednoise))\n", @@ -1549,9 +1533,9 @@ " ascii.write(ascii_data, save_directory+'JWST_NIRSpec_Prism_fit_transmission_spectra.csv', format='csv',overwrite=True)\n", " #---------------------------------------------------------\n", " msize=plt.rcParams['lines.markersize'] ** 2. #default marker size\n", - " #Plot data models\n", + " # Plot data models\n", " \n", - " #plot\n", + " # plot\n", " plt.rcParams['figure.figsize'] = [10.0, 7.0] # Figure dimensions\n", " msize=plt.rcParams['lines.markersize'] ** 2. # default marker size\n", " fig=plt.figure(constrained_layout=True)\n", @@ -1696,7 +1680,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.6" } }, "nbformat": 4,