forked from udacity/artificial-intelligence-for-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tests.py
202 lines (157 loc) · 7.51 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import collections
from collections import OrderedDict
import copy
import pandas as pd
import numpy as np
from datetime import date, timedelta
pd.options.display.float_format = '{:.8f}'.format
def _generate_output_error_msg(fn_name, fn_inputs, fn_outputs, fn_expected_outputs):
formatted_inputs = []
formatted_outputs = []
formatted_expected_outputs = []
for input_name, input_value in fn_inputs.items():
formatted_outputs.append('INPUT {}:\n{}\n'.format(
input_name, str(input_value)))
for output_name, output_value in fn_outputs.items():
formatted_outputs.append('OUTPUT {}:\n{}\n'.format(
output_name, str(output_value)))
for expected_output_name, expected_output_value in fn_expected_outputs.items():
formatted_expected_outputs.append('EXPECTED OUTPUT FOR {}:\n{}\n'.format(
expected_output_name, str(expected_output_value)))
return 'Wrong value for {}.\n' \
'{}\n' \
'{}\n' \
'{}' \
.format(
fn_name,
'\n'.join(formatted_inputs),
'\n'.join(formatted_outputs),
'\n'.join(formatted_expected_outputs))
def _is_equal(x, y):
is_equal = False
if isinstance(x, pd.DataFrame) or isinstance(y, pd.Series):
is_equal = x.equals(y)
elif isinstance(x, np.ndarray):
is_equal = np.array_equal(x, y)
elif isinstance(x, list):
if len(x) == len(y):
for x_item, y_item in zip(x, y):
if not _is_equal(x_item, y_item):
break
else:
is_equal = True
else:
is_equal = x == y
return is_equal
def project_test(func):
def func_wrapper(*args):
result = func(*args)
print('Tests Passed')
return result
return func_wrapper
def generate_random_tickers(n_tickers=None):
min_ticker_len = 3
max_ticker_len = 5
tickers = []
if not n_tickers:
n_tickers = np.random.randint(8, 14)
ticker_symbol_random = np.random.randint(ord('A'), ord('Z')+1, (n_tickers, max_ticker_len))
ticker_symbol_lengths = np.random.randint(min_ticker_len, max_ticker_len, n_tickers)
for ticker_symbol_rand, ticker_symbol_length in zip(ticker_symbol_random, ticker_symbol_lengths):
ticker_symbol = ''.join([chr(c_id) for c_id in ticker_symbol_rand[:ticker_symbol_length]])
tickers.append(ticker_symbol)
return tickers
def generate_random_dates(n_days=None):
if not n_days:
n_days = np.random.randint(14, 20)
start_year = np.random.randint(1999, 2017)
start_month = np.random.randint(1, 12)
start_day = np.random.randint(1, 29)
start_date = date(start_year, start_month, start_day)
dates = []
for i in range(n_days):
dates.append(start_date + timedelta(days=i))
return dates
def assert_structure(received_obj, expected_obj, obj_name):
assert isinstance(received_obj, type(expected_obj)), \
'Wrong type for output {}. Got {}, expected {}'.format(obj_name, type(received_obj), type(expected_obj))
if hasattr(expected_obj, 'shape'):
assert received_obj.shape == expected_obj.shape, \
'Wrong shape for output {}. Got {}, expected {}'.format(obj_name, received_obj.shape, expected_obj.shape)
elif hasattr(expected_obj, '__len__'):
assert len(received_obj) == len(expected_obj), \
'Wrong len for output {}. Got {}, expected {}'.format(obj_name, len(received_obj), len(expected_obj))
if type(expected_obj) == pd.DataFrame:
assert set(received_obj.columns) == set(expected_obj.columns), \
'Incorrect columns for output {}\n' \
'COLUMNS: {}\n' \
'EXPECTED COLUMNS: {}'.format(obj_name, sorted(received_obj.columns), sorted(expected_obj.columns))
# This is to catch a case where __equal__ says it's equal between different types
assert set([type(i) for i in received_obj.columns]) == set([type(i) for i in expected_obj.columns]), \
'Incorrect types in columns for output {}\n' \
'COLUMNS: {}\n' \
'EXPECTED COLUMNS: {}'.format(obj_name, sorted(received_obj.columns), sorted(expected_obj.columns))
for column in expected_obj.columns:
assert received_obj[column].dtype == expected_obj[column].dtype, \
'Incorrect type for output {}, column {}\n' \
'Type: {}\n' \
'EXPECTED Type: {}'.format(obj_name, column, received_obj[column].dtype, expected_obj[column].dtype)
if type(expected_obj) in {pd.DataFrame, pd.Series}:
assert set(received_obj.index) == set(expected_obj.index), \
'Incorrect indices for output {}\n' \
'INDICES: {}\n' \
'EXPECTED INDICES: {}'.format(obj_name, sorted(received_obj.index), sorted(expected_obj.index))
# This is to catch a case where __equal__ says it's equal between different types
assert set([type(i) for i in received_obj.index]) == set([type(i) for i in expected_obj.index]), \
'Incorrect types in indices for output {}\n' \
'INDICES: {}\n' \
'EXPECTED INDICES: {}'.format(obj_name, sorted(received_obj.index), sorted(expected_obj.index))
def does_data_match(obj_a, obj_b):
if type(obj_a) == pd.DataFrame:
# Sort Columns
obj_b = obj_b.sort_index(1)
obj_a = obj_a.sort_index(1)
if type(obj_a) in {pd.DataFrame, pd.Series}:
# Sort Indices
obj_b = obj_b.sort_index()
obj_a = obj_a.sort_index()
try:
data_is_close = np.isclose(obj_b, obj_a, equal_nan=True)
except TypeError:
data_is_close = obj_b == obj_a
else:
if isinstance(obj_a, collections.Iterable):
data_is_close = data_is_close.all()
return data_is_close
def assert_output(fn, fn_inputs, fn_expected_outputs, check_parameter_changes=True):
assert type(fn_expected_outputs) == OrderedDict
if check_parameter_changes:
fn_inputs_passed_in = copy.deepcopy(fn_inputs)
else:
fn_inputs_passed_in = fn_inputs
fn_raw_out = fn(**fn_inputs_passed_in)
# Check if inputs have changed
if check_parameter_changes:
for input_name, input_value in fn_inputs.items():
passed_in_unchanged = _is_equal(input_value, fn_inputs_passed_in[input_name])
assert passed_in_unchanged, 'Input parameter "{}" has been modified inside the function. ' \
'The function shouldn\'t modify the function parameters.'.format(input_name)
fn_outputs = OrderedDict()
if len(fn_expected_outputs) == 1:
fn_outputs[list(fn_expected_outputs)[0]] = fn_raw_out
elif len(fn_expected_outputs) > 1:
assert type(fn_raw_out) == tuple,\
'Expecting function to return tuple, got type {}'.format(type(fn_raw_out))
assert len(fn_raw_out) == len(fn_expected_outputs),\
'Expected {} outputs in tuple, only found {} outputs'.format(len(fn_expected_outputs), len(fn_raw_out))
for key_i, output_key in enumerate(fn_expected_outputs.keys()):
fn_outputs[output_key] = fn_raw_out[key_i]
err_message = _generate_output_error_msg(
fn.__name__,
fn_inputs,
fn_outputs,
fn_expected_outputs)
for fn_out, (out_name, expected_out) in zip(fn_outputs.values(), fn_expected_outputs.items()):
assert_structure(fn_out, expected_out, out_name)
correct_data = does_data_match(expected_out, fn_out)
assert correct_data, err_message