-
Notifications
You must be signed in to change notification settings - Fork 15
/
relation.py
49 lines (40 loc) · 1.54 KB
/
relation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#!/usr/bin/env python
"""Given phrases p1 and p2, find nearest neighbors to both and rank
pairs of neighbors by similarity to vec(p2)-vec(p1) in given word
representation.
The basic idea is a straightforward combination of nearest neighbors
and analogy as in word2vec (https://code.google.com/p/word2vec/).
"""
import sys
import os
import numpy
import wvlib
from common import process_args, query_loop
def process_query(wv, query, options=None):
vectors = [wv.words_to_vector(q) for q in query]
words = [w for q in query for w in q]
nncount = 100 # TODO: add CLI parameter
nearest = [wv.nearest(v, n=nncount, exclude=words) for v in vectors]
nearest = [[(n[0], n[1], wv[n[0]]) for n in l] for l in nearest]
assert len(nearest) == 2, 'internal error'
pairs = [(n1, n2,
numpy.dot(wvlib.unit_vector(vectors[1]-vectors[0]+n1[2]), n2[2]))
for n1 in nearest[0] for n2 in nearest[1] if n1[0] != n2[0]]
pairs.sort(lambda a, b: cmp(b[2], a[2]))
nncount = options.number if options else 10
for p in pairs[:nncount]:
print '%s\t---\t%s\t%f' % (p[0][0], p[1][0], p[2])
return True
def main(argv=None):
if argv is None:
argv = sys.argv
options = process_args(argv[1:])
try:
wv = wvlib.load(options.vectors, max_rank=options.max_rank)
wv = wv.normalize()
except Exception, e:
print >> sys.stderr, 'Error: %s' % str(e)
return 1
return query_loop(wv, options, process_query, query_count=2)
if __name__ == '__main__':
sys.exit(main(sys.argv))