forked from lazierthanthou/Lecture_Notes_GR
-
Notifications
You must be signed in to change notification settings - Fork 2
/
lecture10.tex
231 lines (189 loc) · 9.67 KB
/
lecture10.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
\section{Metric Manifolds}
We establish a structure on a smooth manifold that allows one to assign vectors in each tangent space a length (and an angle between vectors in the same tangent space). From this structure, one can then define a notion of length of a curve. Then we can look at shortest curves (which will be called \textbf{geodesics}).
Requiring then that the shortest curves coincide with the straight curves (w.r.t. $\nabla$) will result in $\nabla$ being determined by the metric structure $g$. $\nabla$, in turn determines the curvature given by $Riem$. Thus
\[
g \overset{\substack{\text{straight} = \text{shortest/} \\ \text{longest/ stationary curves} \\ T =0}}{\rightsquigarrow} \nabla \rightsquigarrow Riem
\]
\subsection{Metrics}
\begin{definition}
A metric $g$ on a smooth manifold $\mfd$ is a $(0,2)$-tensor field satisfying
\begin{enumerate}[(i)]
\item \textbf{symmetry: }$g(X,Y) = g(Y,X) \quad \forall \, X, Y \text{ vector fields}$
\item \textbf{non-degeneracy: }the \underline{musical map}
\begin{align*}
\text{``flat''} \, \, \flat : \Gamma(TM) & \to \Gamma(T^*M) \\
X \mapsto \flat(X) \\
\text{ where } & \flat(X)(Y):= g(X,Y) \\
& \flat(X) \in \Gamma(T^*M)
\end{align*}
In thought bubble: $\flat(X) = g(X,\cdot)$
\dots is a $C^{\infty}$-isomorphism in other words, it is invertible.
\end{enumerate}
\end{definition}
\underline{Remark}: $(\flat(X))_a$ \quad \, or \\
$X_a$ \\
$(\flat(X))_a := g_{am} X^m$
Thought bubble: $\flat^{-1} = \sharp$
$\flat^{-1}(\omega)^a := g^{am}\omega_m$ \\
$\flat^{-1}(\omega)^a := (g^{``-1''})^{am}\omega_m \implies$ not needed. (all of this is not needed)
\begin{definition}
The $(2,0)$-tensor field $g^{``-1''}$ with respect to a metric $g$ is the symmetric
\begin{align*}
g^{``-1''} : \Gamma(T^*M) \times \Gamma(T^*M) \xrightarrow{ ~ } C^{\infty}(M) \\
(\omega, \sigma) \mapsto \omega(\flat^{-1}(\sigma)) \quad \quad \, \flat^{-1}(\sigma) \in \Gamma(TM))
\end{align*}
\underline{chart}: $g_{ab} = g_{ba} \quad \quad (g^{-1})^{am} g_{mb} = \delta^a_b$
\end{definition}
\underline{Example}: Consider $(S^2, \mathcal{O}, \A)$ and the chart $(U,x)$
\begin{align*}
\varphi \in (0,2\pi), & \quad \quad \theta \in (0,\pi)
\end{align*}
Define the metric \\
\[
g_{ij}(x^{-1}(\theta,\varphi)) = \left[ \begin{matrix} R^2 & 0 \\
0 & R^2\sin^2{\theta} \end{matrix} \right]_{ij}
\]
$R \in \R^+$
``the metric of the \underline{round sphere of radius $R$}''
\subsection{Signature}
Linear algebra: \quad \quad \, $\begin{aligned} & A\indices{^a_{m}}v^m = \lambda v^a & \quad \quad \quad \, \left(\begin{matrix} \lambda_1 & & 0 \\
& \ddots & \\
0 & & \lambda_n \end{matrix} \right) \\
& g_{am} v^m = \lambda \cdot v^a ? \rightsquigarrow & \quad \quad \quad \, \left( \begin{matrix}
1 & & & & & & & \\
& \ddots & & & & & & & \\
& & 1 & & & & & & \\
& & & -1 & & & & & \\
& & & & \ddots & & & & \\
& & & & & -1 & & & \\
& & & & & & 0 & & \\
& & & & & & & \ddots & \\
& & & & & & & & 0 \end{matrix} \right)
\end{aligned}$
$(1,1)$ tensor has eigenvalues \\
$(0,2)$ has \underline{signature} $(p,q)$ (well-defined)
$\left. \begin{aligned}
(+++) \\
(++-) \\
(+--) \\
(---) \end{aligned} \right\rbrace$ $d+1$ if $p+q = \text{dim}V$
\begin{definition} A metric is called \textbf{Riemannian} if its signature is $(++ \dots +)$, and \textbf{Lorentzian} if it is $(+-\dots -)$.
\end{definition}
\subsection{Length of a curve}
Let $\gamma$ be a smooth curve. Then we know its veloctiy $v_{\gamma,\gamma(\lambda)}$ at each $\gamma(\lambda) \in M$.
\begin{definition}
On a Riemannian metric manifold $(M, \mathcal{O}, \A, g)$, the \textbf{speed} of a curve at $\gamma(\lambda)$ is the number
\begin{equation}
\boxed{s(\lambda) = (\sqrt{g(v_{\gamma}, v_{\gamma})})_{\gamma(\lambda)}}
\end{equation}
\end{definition}
(I feel the need for speed, then I feel the need for a metric)
\underline{Aside}: $[v^a] = \frac{1}{T}$ \\
\phantom{Aside:} $[g_{ab}] = L^2 $ \\
\phantom{Aside:} $[\sqrt{g_{ab}v^av^b}] = \sqrt{ \frac{L^2}{T^2}} = \frac{L}{T}$
\begin{definition}
Let $\gamma:(0,1) \to M$ a smooth curve. Then the \textbf{length of $\gamma$}, $L[\gamma] \in \R$ is the number
\begin{equation}
\boxed{L[\gamma] := \int_0^1 d\lambda s(\lambda) = \int_0^1 d\lambda \sqrt{ (g(v_{\gamma}, v_{\gamma}))_{\gamma(\lambda)}}}
\end{equation}
\end{definition}
F. Schuller: ``velocity is more fundamental than speed, speed is more fundamental than length''
\textbf{Example:} Reconsider the round sphere of radius $R$. Consider its equator:
\begin{align*}
\theta(\lambda) := (x^1 \after \gamma)(\lambda) = \frac{\pi}{2}, & \quad \varphi(\lambda) := (x^2 \after \gamma)(\lambda) = 2\pi \lambda^3 \\
\implies \theta'(\lambda) = 0, & \quad \varphi'(\lambda) = 6\pi\lambda^2
\end{align*}
On the same chart $g_{ij} = \left[ \begin{matrix} R^2 & \\
& R^2 \sin^2{\theta} \end{matrix} \right]$
Do everything in this chart
\begin{align*}
L[\gamma] & = \int_0^1 d\lambda \sqrt{g_{ij}(x^{-1}(\theta(\lambda), \varphi(\lambda)))(x^i \after \gamma)'(\lambda)(x^j \after \gamma)'(\lambda)} \\
& = \int_0^1 d\lambda \sqrt{R^2 \cdot 0 + R^2\sin^2{(\theta(\lambda))} 36 \pi^2 \lambda^4} \\
& = 6\pi R \int_0^1 d\lambda \lambda^2 = 6\pi R [\frac{1}{3} \lambda^3]^1_0 = 2\pi R
\end{align*}
\begin{theorem}
$\gamma : (0,1) \to M$ and $\sigma :(0,1) \to (0,1)$ smooth bijective and \underline{increasing} ``reparametrization'' \\
$L[\gamma] = L[\gamma \after \sigma]$
\end{theorem}
\begin{proof}
in Tutorials
\end{proof}
\subsection{Geodesics}
\begin{definition}
A curve $\gamma : (0,1) \to M$ is called a \textbf{geodesic} on a Riemannian manifold $(M, \mathcal{O}, \A, g)$ if it is a stationary curve with respect to a length functional $L$.
\end{definition}
Thought bubble: In classical mechanics, deform the curve a little, $\epsilon$ times this deformation, to first order, it agrees with $L[\gamma]$.
\begin{theorem}
$\gamma$ is geodesic iff it satisfies the Euler-Lagrange equations for the Lagrangian
\end{theorem}
\begin{align*}
\mathcal{L} : & TM \to \R \\
& X \mapsto \sqrt{g(X,X)}
\end{align*}
In a chart, the Euler Lagrange equations take the form:
\[
\left(\cibasis[\mathcal{L}]{\dot{x}^m}\right)^{\cdot} - \cibasis[\mathcal{L}]{x^m} = 0
\]
F.Schuller: this is a chart dependent formulation
here:
\[
\mathcal{L}(\gamma^i, \dot{\gamma}^i) = \sqrt{g_{ij}(\gamma(\lambda)) \dot{\gamma}^i(\lambda) \dot{\gamma}^j(\lambda)}
\]
Euler-Lagrange equations:
\begin{align*}
\cibasis[\mathcal{L}]{\dot{\gamma}^m} = \frac{1}{\sqrt{\dots}} g_{mj}(\gamma(\lambda)) \dot{\gamma}^j(\lambda) \\
\left(\cibasis[\mathcal{L}]{\dot{\gamma}^m}\right)^{\cdot} = \left(\frac{1}{\sqrt{\dots}} \right)^{\cdot} g_{mj}(\gamma(\lambda)) \cdot \dot{\gamma}^j(\lambda) + \frac{1}{\sqrt{\dots}} \left(g_{mj}(\gamma(\lambda)) \ddot{\gamma}^j(\lambda) + \dot{\gamma}^s(\partial_s g_{mj}) \dot{\gamma}^j(\lambda) \right)
\end{align*}
Thought bubble: reparametrize $g(\dot{\gamma}, \dot{\gamma}) = 1$ (it's a condition on my reparametrization)
By a clever choice of reparametrization $(\frac{1}{\sqrt{\dots}})^{\cdot} = 0$
\[
\cibasis[\mathcal{L}]{\gamma^m} = \frac{1}{2\sqrt{\dots}} \partial_m g_{ij}(\gamma(\lambda)) \dot{\gamma}^i(\lambda) \dot{\gamma}^j(\lambda)
\]
putting this together as Euler-Lagrange equations:
\begin{align*}
g_{mj} \ddot{\gamma}^j + \partial_s g_{mj} \dot{\gamma}^s \dot{\gamma}^j - \frac{1}{2} \partial_m g_{ij} \dot{\gamma}^i \dot{\gamma}^j = 0 \\
\ddot{\gamma^q} + (g^{-1})^{qm}(\partial_i g_{mj} - \frac{1}{2} \partial_m g_{ij}) \dot{\gamma}^i \dot{\gamma}^j = 0 && (\text{multiply on both sides }(g^{-1})^{qm}) \\
\boxed{\ddot{\gamma^q} + (g^{-1})^{qm}\frac{1}{2} (\partial_i g_{mj} + \partial_j g_{mi} - \partial_m g_{ij}) \dot{\gamma}^i \dot{\gamma}^j = 0}
\end{align*}
geodesic equation for $\gamma$ in a chart.
\[
\boxed{(g^{-1})^{qm}\frac{1}{2} (\partial_i g_{mj} + \partial_j g_{mi} - \partial_m g_{ij} ) =: \ccf{q}{ij}(\gamma(\lambda))
}
\]
Thought bubble: $\left(\cibasis[\mathcal{L}]{\xi_x^{a+\text{dim}M}} \right)^{\cdot}_{\sigma(x)} - \left(\cibasis[\mathcal{L}]{xi^a_x} \right)_{\sigma(x)} = 0$
\begin{definition}
\textbf{Christoffel symbol} ${\,}^{\text{L.C.}}\Gamma$ are the connection coefficient functions of the so-called Levi-Civita connection ${\,}^{\text{L.C.}}\nabla$
\end{definition}
We usually make this choice of $\nabla$ if $g$ is given.
$(M, \mathcal{O}, \A, g) \to (M, \mathcal{O}, \A, g, {\,}^{\text{L.C.}}\nabla)$
\underline{abstract way}: $\nabla g = 0$ and $T = 0$ (torsion) \\
$\Longrightarrow \nabla = {\,}^{\text{L.C.}}\nabla$
\begin{definition}
\begin{enumerate}[(a)]
\item The \textbf{Riemann-Christoffel curvature} is defined by
\begin{equation}
\boxed{R_{abcd} := g_{am}R\indices{^m_{bcd}}}
\end{equation}
\item \textbf{Ricci}
\begin{equation}
\boxed{R_{ab} = R\indices{^m_{amb}}}
\end{equation}
Thought bubble: with a metric, ${\,}^{\text{L.C.}}\nabla$
\item (Ricci) scalar curvature:
\begin{equation}
\boxed{R = g^{ab} R_{ab}}
\end{equation}
Thought bubble: ${\,}^{\text{L.C.}}\nabla$
\end{enumerate}
\end{definition}
\begin{definition}
\textbf{Einstein curvature} of $(M, \mathcal{O}, \A, g)$ is defined as
\begin{equation}
\boxed{G_{ab} := R_{ab} - \frac{1}{2} g_{ab} R}
\end{equation}
\end{definition}
\underline{Convention}: $g^{ab} := (g^{``-1''})^{ab}$
F. Schuller: these indices are not being pulled up, because what would you pull them up with
(student) Question: Does the Einstein curvature yield new information? \\
Answer: \\
$g^{ab} G_{ab} = R_{ab} g^{ab} - \frac{1}{2} g_{ab} g^{ab} R = R - \delta^a_a R = R - \frac{1}{2} \text{dim}M \, R = (1- \frac{d}{2}) R$