forked from lazierthanthou/Lecture_Notes_GR
-
Notifications
You must be signed in to change notification settings - Fork 2
/
lecture12.tex
226 lines (190 loc) · 10.3 KB
/
lecture12.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
\section{Integration}
\begin{framed}
This lecture will be the completion of our ``lift'' of analysis on charts to the manifold level. We want to be able to integrate a function $f$ over a manifold $M$. This $\int_{M} f$ will be an important tool for writing down the action on Einstein Equations.
However, to define integral we need a mild new structure on the smooth manifold $\mfd$. It requires \\
(i) a choice of a certain tensor field, the so-called \textbf{volume form} and \\
(ii) a restriction on the atlas $\A$, which is called '\textbf{orientation}'.
\end{framed}
\subsection{Review of integration on $\mathbb{R}^d$}
We review this because this is what, after all, happens on charts; and we want to use this knowledge to have a well-defined integration on manifolds.
\begin{enumerate}[a)]
\item If $F : \R \to \R$, we assume a notion of integration is known. We define an integral over an interval $(a,b)$ as follows: \\
\[
\int_{(a,b)} F := \int_a^b dx \, F(x) \quad\quad \text{(which is understood in terms of, say, Riemann's integral)}.
\]
\item If $F : \R^k \to \R$, then
\begin{enumerate}[(i)]
\item on a box-shaped domain, $Box = (a,b) \times (c,d) \times \dotsb \times (u,v) \subseteq \R^k$, the integral on the box is a series of integrals which have to be evaluated one after the other as follows \\
\[
\int_{Box} F := \int_a^b dx^1 \int_c^d dx^2 \dotsi \int_u^v dx^k \, F(x^1, x^2, \dotsc, x^k)
\]
\item for other domains, $G \subseteq \R^k$, we first introduce an \textbf{indicator function} $\mu_G : \R^k \to \R$ such that
\[
\mu_G(x) = \begin{cases}
1, \quad \quad x \in G \\
0, \quad \quad x \not\in G
\end{cases}
\]
and then define
\[
\int_{G} F := \int_{-\infty}^{+\infty} dx^1 \int_{-\infty}^{+\infty} dx^2 \dotsi \int_{-\infty}^{+\infty} dx^k \, \mu_G(x) \cdot F(x^1, x^2, \dotsc, x^k)
\]
While this may not be a practical definition, it tells us what we mean by an integral over a function from $\R^k$ to $\R$ over an arbitrary domain $G$.
\end{enumerate}
\end{enumerate}
\textit{\textbf{Note}: All of the above comes with the disclaimer '\textbf{if the integral exists}' since there could be many issues that do not allow the existence of the integral as defined above.}
\textbf{Change of variables}, which may also be called integration by substitution.
\begin{theorem}
If $F : \R^k \ni G \to \R$ and $\phi : preim_\phi(G) (\in \R^k) \to G$, then
\[
\int_G F(x) = \int_{preim_\phi(G)} \underbrace{\left\lvert det(\partial x)(y) \right\rvert}_{\text{Jacobian of }\phi} \cdot (F \after \phi)(y)
\]
\end{theorem}
\begin{tikzpicture}
\matrix (m) [matrix of math nodes, row sep=4em, column sep=6em, minimum width=2em]
{
\R^k \ni preim_\phi(G) & G \in \R^k \\
& \R \\
};
\path[->]
(m-1-1) edge node[auto] {$\phi$} (m-1-2)
edge node[sloped, anchor=center, below] {$F \after \phi$} (m-2-2)
(m-1-2) edge node[auto] {$F$} (m-2-2);
\end{tikzpicture}
\textbf{Example}: Consider the domain $G \subset \R^2$, which includes the entire $R^2$ except the x-axis. Let
\begin{align*}
\phi : & \R^+ \times \lbrace(0,\pi) \cup (\pi,2\pi)\rbrace \to G \\
& (r, \varphi) \mapsto (r\cos\varphi, r\sin\varphi)
\end{align*}
Thus, $G$ is in Cartesian coordinates and $preim_\phi(G)$ is in polar coordinates. Let us calculate the Jacobian.
\begin{align*}
(\partial_a x^b) (r, \varphi) & = \begin{vmatrix}
\cos\varphi & \sin\varphi \\
-r\sin\varphi & r\cos\varphi
\end{vmatrix} \\
det(\partial_a x^b) (r, \varphi) & = r \\
\implies \int_G \underbrace{dx^1 \, dx^2}_{\text{volume element}} \, F(x^1,x^2) & = \int_0^\infty \int_0^{2\pi} \underbrace{dr \, d\varphi \, r}_{\text{volume element}} F(r\cos\varphi, r\sin\varphi)
\end{align*}
\subsection{Integration on one chart}
Let $\mfd$ be a smooth manifold, $f : M \to \R$ and choose charts $(U,x), (U,y) \in \A$
\begin{tikzpicture}
\matrix (m) [matrix of math nodes, row sep=5em, column sep=7em, minimum width=2em]
{
y(U) \in \R^k & \\
U & \R \\
x(U) \in \R^k & \\
};
\path[->]
(m-2-1) edge node[auto] {$f$} (m-2-2)
edge node[auto] {$y$} (m-1-1)
edge node[auto] {$x$} (m-3-1)
(m-1-1) edge node[sloped, anchor=center, above] {$f_{(y)} := f \after y^{-1}$} (m-2-2)
(m-3-1) edge node[sloped, anchor=center, below] {$f_{(x)} := f \after x^{-1}$} (m-2-2)
(m-3-1) edge [bend left=40] node[left] {$y \after x^{-1}$} (m-1-1);
\end{tikzpicture}
Consider $\int_U f$
\[
\int_U f := \int_{x(U)} d^k\alpha \, f_{(x)}(\alpha)
\]
\subsection{Volume forms}
\begin{definition}
On a smooth manifold $(M,\mathcal{O},\mathcal{A})$ \\
a $(0,\text{dim}M)$-tensor field $\Omega$ is called a \underline{volume form} if
\begin{enumerate}
\item[(a)] $\Omega$ vanishes nowhere (i.e. $\Omega \neq 0 \, \, \forall \, p \in M$)
\item[(b)] totally antisymmetric
\[
\Omega(\dots , \underbrace{X}_{i\text{th}} , \dots , \underbrace{Y}_{j\text{th}} \dots ) = - \Omega(\dots , \underbrace{Y}_{i\text{th}} , \dots , \underbrace{X}_{j\text{th}} \dots )
\]
\end{enumerate}
In a chart:
\[
\Omega_{i_1 \dots i_d} = \Omega_{ [i_1 \dots i_d ]}
\]
\end{definition}
\underline{Example} $(M,\mathcal{O}, \mathcal{A},g)$ metric manifold
construct volume form $\Omega$ from $g$
In \underline{any} chart: $(U,x)$
\[
\Omega_{i_1 \dots i_d} := \sqrt{ \text{det}(g_{ij}(x)) } \epsilon_{i_1 \dots i_d}
\]
where \textbf{Levi-Civita symbol} $\epsilon_{i_1 \dots i_d}$ is \underline{defined} as $\begin{aligned} & \quad \\
& \epsilon_{123 \dots d} = +1 \\
& \epsilon_{1\dots d} = \epsilon_{[i_1 \dots i_d]} \end{aligned}$
\begin{proof} (well-defined) Check: What happens under a change of charts
\[
\begin{aligned}
\Omega(y)_{i_1 \dots i_d} & = \sqrt{ \text{det}(g(y)_{ij}) } \epsilon_{i_1 \dots i_d} = \\
& = \sqrt{ \text{det}(g_{mn}(x) \frac{ \partial x^m}{ \partial y^i} \frac{ \partial x^n}{ \partial y^j} )} \frac{ \partial y^{m_1} }{ \partial x^{i_1} } \dots \frac{ \partial y^{m_d}}{ \partial x^{i_d}} \epsilon_{ [m_1 \dots m_d] } = \\
& = \sqrt{ | \text{det}g_{ij}(x) | } \left| \text{det}\left( \frac{ \partial x}{ \partial y} \right) \right| \text{det}\left( \frac{ \partial y}{ \partial x} \right) \epsilon_{i_1 \dots i_d} = \sqrt{ \text{det}g_{ij}(x)} \epsilon_{i_1 \dots i_d} \text{sgn}\left( \text{det}\left( \frac{ \partial x}{ \partial y} \right) \right)
\end{aligned}
\]
\end{proof}
EY : 20150323
Consider the following:
\[
\begin{aligned}
\Omega(y)(Y_{(1)} \dots Y_{(d)} ) & = \Omega(y)_{i_1 \dots i_d}Y_{(1)}^{i_1} \dots Y_{(d)}^{i_d} = \\
& = \sqrt{ \text{det}(g_{ij}(y)) } \epsilon_{i_1 \dots i_d} Y^{i_1}_{(1)} \dots Y^{i_d}_{(d)} = \\
& = \sqrt{ \text{det}(g_{mn}(x)) \frac{ \partial x^m}{ \partial y^i} \frac{ \partial x^n }{ \partial y^j} } \epsilon_{i_1 \dots i_d} \frac{ \partial y^{i_1}}{ \partial x^{m_1} } \dots \frac{ \partial y^{i_d} }{ \partial x^{m_d} } X^{m_1} \dots X^{m_d} = \\
& = \sqrt{ \text{det}(g_{mn}(x))\frac{ \partial x^m}{ \partial y^i} \frac{ \partial x^n}{ \partial y^j}} \text{det}\left( \frac{ \partial y}{ \partial x}\right) \epsilon_{m_1 \dots m_d} X^{m_1} \dots X^{m_d} = \\
& = \sqrt{ \text{det}(g_{mn}(x)) } \left| \text{det}\left( \frac{ \partial x}{ \partial y} \right) \right| \text{det}\left( \frac{ \partial y}{ \partial x} \right) \epsilon_{m_1 \dots m_d} X^{m_1} \dots X^{m_d} = \\
& = \sqrt{\text{det}(g_{mn}(x))} \epsilon_{m_1 \dots m_d} \text{sgn}\left(\text{det}\left( \frac{ \partial x}{ \partial y} \right) \right) X^{m_1} \dots X^{m_d} = \text{sgn}(\text{det}\left( \frac{ \partial x}{ \partial y} \right)) \Omega_{m_1 \dots m_d}(x) X^{m_1} \dots X^{m_d}
\end{aligned}
\]
If $\text{det}\left( \frac{ \partial y}{ \partial x} \right) > 0$,
\[
\Omega(y)(Y_{(1)} \dots Y_{(d)}) = \Omega(x)(X_{(1)} \dots X_{(d)} )
\]
This works also if Levi-Civita symbol $\epsilon_{i_1\dots i_d}$ doesn't change at all under a change of charts. (around 42:43 \url{https://youtu.be/2XpnbvPy-Zg})
\hrulefill
Alright, let's require, \\
\phantom{\quad \, } restrict the smooth atlas $\mathcal{A}$ \\
\phantom{\quad \quad \, } to a subatlas ($\mathcal{A}^{\uparrow}$ still an atlas)
\[
\mathcal{A}^{\uparrow} \subseteq \mathcal{A}
\]
s.t. $\forall \, (U,x), (V,y)$ have chart transition maps $\begin{aligned} & \quad \\
& y\circ x^{-1} \\
& x\circ y^{-1} \end{aligned}$
s.t. $\text{det}\left( \frac{ \partial y}{ \partial x} \right) >0$ \\
\phantom{ \quad \, } such $\mathcal{A}^{\uparrow} $ called an \textbf{oriented} atlas
\[
(M, \mathcal{O}, \mathcal{A},g) \Longrightarrow (M,\mathcal{O},\mathcal{A}^{\uparrow} ,g)
\]
Note: associated bundles.
Note also:
$ \text{det}\left( \frac{ \partial y^b}{ \partial x^a} \right) = \text{det}(\partial_a(y^bx^{-1}))$ \phantom{ \quad \quad \, } $\frac{ \partial y^b}{ \partial x^a}$ is an endomorphism on vector space $V$. $\begin{aligned} & \quad \\
& \varphi : V \to V \\
& \text{det}\varphi \quad \, \text{ independent of choice of basis } \end{aligned}$
\phantom{\quad \quad \, } $g$ is a $(0,2)$ tensor field, not endomorphism (not independent of choice of basis) $\sqrt{ |\text{det}(g_{ij}(y)) | }$
\begin{definition} $\Omega$ be a volume form on $(M,\mathcal{O}, \mathcal{A}^{\uparrow} )$ and consider chart $(U,x)$
\begin{definition} $\omega_{(X)} := \Omega_{i_1\dots i_d} \epsilon^{i_1\dots i_d}$
same way $\begin{aligned} & \quad \\
& \epsilon^{12 \dots d} = +1 \\
& \epsilon^{[\dots ]} \end{aligned}$
one can show
\[
\boxed{ \omega_{(y)} = \text{det}\left( \frac{ \partial x}{ \partial y} \right) \omega_{(x)} } \quad \quad \, \text{ scalar density }
\]
\end{definition}
\end{definition}
\subsection{Integration on \underline{one} chart domain $U$}
\begin{definition}
\begin{equation}
\boxed{ \int_U f :\overset{ (U,y) }{=} \int_{y(U)} d^d\beta \omega_{(y)}(y^{-1}(\beta)) f_{(y)}(\beta) }
\end{equation}
\end{definition}
\begin{proof}: Check that it's (well-defined), how it changes under change of charts
\[
\begin{gathered}
\int_U f :\overset{ (U,y) }{=} \int_{y(U)} d^d\beta \omega_{(y)}(y^{-1}(\beta)) f_{(y)}(\beta) = \underset{ (U,y)}{=} \int_{x(U)} \int d^d\alpha \left| \text{det}\left( \frac{ \partial y }{ \partial x}\right) \right| f_{(x)}(\alpha) \omega_{(x)}(x^{-1}(\alpha) \text{det}\left( \frac{ \partial x}{ \partial y } \right) = \\
= \int_{x(U)} d^d \alpha \omega_{(x)}(x^{-1}(x)) f_{(x)}(\alpha)
\end{gathered}
\]
\end{proof}
On an oriented metric manifold $(M,\mathcal{O}, \mathcal{A}^{\uparrow}, g)$
\[
\int_Uf:= \int_{x(U)} d^d\alpha \underbrace{ \sqrt{ \text{det}(g_{ij}(x))(x^{-1}(\alpha)) } }_{\sqrt{g}} f_{(x)}(\alpha)
\]
\subsection{Integration on the entire manifold}